Goto

Collaborating Authors

 Cao, Zhihao


Smart Help: Strategic Opponent Modeling for Proactive and Adaptive Robot Assistance in Households

arXiv.org Artificial Intelligence

Despite the significant demand for assistive technology among vulnerable groups (e.g., the elderly, children, and the disabled) in daily tasks, research into advanced AI-driven assistive solutions that genuinely accommodate their diverse needs remains sparse. Traditional human-machine interaction tasks often require machines to simply help without nuanced consideration of human abilities and feelings, such as their opportunity for practice and learning, sense of self-improvement, and self-esteem. Addressing this gap, we define a pivotal and novel challenge Smart Help, which aims to provide proactive yet adaptive support to human agents with diverse disabilities and dynamic goals in various tasks and environments. To establish this challenge, we leverage AI2-THOR to build a new interactive 3D realistic household environment for the Smart Help task. We introduce an innovative opponent modeling module that provides a nuanced understanding of the main agent's capabilities and goals, in order to optimize the assisting agent's helping policy. Rigorous experiments validate the efficacy of our model components and show the superiority of our holistic approach against established baselines. Our findings illustrate the potential of AI-imbued assistive robots in improving the well-being of vulnerable groups.


Calibration of Deep Learning Classification Models in fNIRS

arXiv.org Artificial Intelligence

Functional near-infrared spectroscopy (fNIRS) is a valuable non-invasive tool for monitoring brain activity. The classification of fNIRS data in relation to conscious activity holds significance for advancing our understanding of the brain and facilitating the development of brain-computer interfaces (BCI). Many researchers have turned to deep learning to tackle the classification challenges inherent in fNIRS data due to its strong generalization and robustness. In the application of fNIRS, reliability is really important, and one mathematical formulation of the reliability of confidence is calibration. However, many researchers overlook the important issue of calibration. To address this gap, we propose integrating calibration into fNIRS field and assess the reliability of existing models. Surprisingly, our results indicate poor calibration performance in many proposed models. To advance calibration development in the fNIRS field, we summarize three practical tips. Through this letter, we hope to emphasize the critical role of calibration in fNIRS research and argue for enhancing the reliability of deep learning-based predictions in fNIRS classification tasks. All data from our experimental process are openly available on GitHub.


Simple But Effective: Rethinking the Ability of Deep Learning in fNIRS to Exclude Abnormal Input

arXiv.org Artificial Intelligence

Functional near-infrared spectroscopy (fNIRS) is a non-invasive technique for monitoring brain activity. To better understand the brain, researchers often use deep learning to address the classification challenges of fNIRS data. Our study shows that while current networks in fNIRS are highly accurate for predictions within their training distribution, they falter at identifying and excluding abnormal data which is out-of-distribution, affecting their reliability. We propose integrating metric learning and supervised methods into fNIRS research to improve networks capability in identifying and excluding out-of-distribution outliers. This method is simple yet effective. In our experiments, it significantly enhances the performance of various networks in fNIRS, particularly transformer-based one, which shows the great improvement in reliability. We will make our experiment data available on GitHub.