Goto

Collaborating Authors

 Cao, Yang


NeuroMixGDP: A Neural Collapse-Inspired Random Mixup for Private Data Release

arXiv.org Artificial Intelligence

Private data publishing is a technique that involves releasing a modified dataset to preserve user privacy while enabling downstream machine learning tasks. While many private data publishing algorithms exist, traditional algorithms (e.g., DPPro [1], PrivBayes [2], etc.) based on releasing tabular data are not suitable for modern machine learning tasks involving complex structures such as images, videos, and texts. To tackle this, a series of deep learning algorithms have emerged, such as DP-GAN [3] and PATE-GAN [4], which are based on training a Deep Generative Model (DGM) to generate data with complex structures, such as images, texts, and audios. These methods generate fake data based on the trained DGM and publish it instead of the raw data to respect users' privacy. However, as empirically observed by Takagi et al. [5], these DGM-based methods often suffer from training instability, such as mode collapse and high computational costs and lead to low utility, which is defined as the usefulness of the private data. For example, in the case of classification datasets, utility can be measured by classification accuracy. DPMix -- a new data publishing technique proposed by Lee et al. [6] -- does not rely on training deep generative models and has the potential to improve utility. DPMix, as opposed to DGM-based methods, directly adds noise to the raw dataset -- thereby taking into account users' privacy -- and publishes the noisy version of the dataset. Concretely, inspired by Zhang et al. [7], DPMix first mixes the data points by averaging groups of raw data (with group size m), then adds noise to each individual mixture of data points to respect privacy concerns, and finally publishes the noisy


Federated Heterogeneous Graph Neural Network for Privacy-preserving Recommendation

arXiv.org Artificial Intelligence

Heterogeneous information network (HIN), which contains rich semantics depicted by meta-paths, has become a powerful tool to alleviate data sparsity in recommender systems. Existing HIN-based recommendations hold the data centralized storage assumption and conduct centralized model training. However, the real-world data is often stored in a distributed manner for privacy concerns, resulting in the failure of centralized HIN-based recommendations. In this paper, we suggest the HIN is partitioned into private HINs stored in the client side and shared HINs in the server. Following this setting, we propose a federated heterogeneous graph neural network (FedHGNN) based framework, which can collaboratively train a recommendation model on distributed HINs without leaking user privacy. Specifically, we first formalize the privacy definition in the light of differential privacy for HIN-based federated recommendation, which aims to protect user-item interactions of private HIN as well as user's high-order patterns from shared HINs. To recover the broken meta-path based semantics caused by distributed data storage and satisfy the proposed privacy, we elaborately design a semantic-preserving user interactions publishing method, which locally perturbs user's high-order patterns as well as related user-item interactions for publishing. After that, we propose a HGNN model for recommendation, which conducts node- and semantic-level aggregations to capture recovered semantics. Extensive experiments on three datasets demonstrate our model outperforms existing methods by a large margin (up to 34% in HR@10 and 42% in NDCG@10) under an acceptable privacy budget.


Edge-assisted U-Shaped Split Federated Learning with Privacy-preserving for Internet of Things

arXiv.org Artificial Intelligence

In the realm of the Internet of Things (IoT), deploying deep learning models to process data generated or collected by IoT devices is a critical challenge. However, direct data transmission can cause network congestion and inefficient execution, given that IoT devices typically lack computation and communication capabilities. Centralized data processing in data centers is also no longer feasible due to concerns over data privacy and security. To address these challenges, we present an innovative Edge-assisted U-Shaped Split Federated Learning (EUSFL) framework, which harnesses the high-performance capabilities of edge servers to assist IoT devices in model training and optimization process. In this framework, we leverage Federated Learning (FL) to enable data holders to collaboratively train models without sharing their data, thereby enhancing data privacy protection by transmitting only model parameters. Additionally, inspired by Split Learning (SL), we split the neural network into three parts using U-shaped splitting for local training on IoT devices. By exploiting the greater computation capability of edge servers, our framework effectively reduces overall training time and allows IoT devices with varying capabilities to perform training tasks efficiently. Furthermore, we proposed a novel noise mechanism called LabelDP to ensure that data features and labels can securely resist reconstruction attacks, eliminating the risk of privacy leakage. Our theoretical analysis and experimental results demonstrate that EUSFL can be integrated with various aggregation algorithms, maintaining good performance across different computing capabilities of IoT devices, and significantly reducing training time and local computation overhead.


Deep Learning-Empowered Semantic Communication Systems with a Shared Knowledge Base

arXiv.org Artificial Intelligence

Deep learning-empowered semantic communication is regarded as a promising candidate for future 6G networks. Although existing semantic communication systems have achieved superior performance compared to traditional methods, the end-to-end architecture adopted by most semantic communication systems is regarded as a black box, leading to the lack of explainability. To tackle this issue, in this paper, a novel semantic communication system with a shared knowledge base is proposed for text transmissions. Specifically, a textual knowledge base constructed by inherently readable sentences is introduced into our system. With the aid of the shared knowledge base, the proposed system integrates the message and corresponding knowledge from the shared knowledge base to obtain the residual information, which enables the system to transmit fewer symbols without semantic performance degradation. In order to make the proposed system more reliable, the semantic self-information and the source entropy are mathematically defined based on the knowledge base. Furthermore, the knowledge base construction algorithm is developed based on a similarity-comparison method, in which a pre-configured threshold can be leveraged to control the size of the knowledge base. Moreover, the simulation results have demonstrated that the proposed approach outperforms existing baseline methods in terms of transmitted data size and sentence similarity.


OLIVE: Oblivious Federated Learning on Trusted Execution Environment against the risk of sparsification

arXiv.org Artificial Intelligence

Combining Federated Learning (FL) with a Trusted Execution Environment (TEE) is a promising approach for realizing privacypreserving FL, which has garnered significant academic attention in recent years. Implementing the TEE on the server side enables each round of FL to proceed without exposing the client's gradient information to untrusted servers. This addresses usability gaps in existing secure aggregation schemes as well as utility gaps in differentially private FL. However, to address the issue using a TEE, the vulnerabilities of server-side TEEs need to be considered--this has not been sufficiently investigated in the context of FL. The main Figure 1: Olive, i.e., ObLIVious fEderated learning on TEE is technical contribution of this study is the analysis of the vulnerabilities the first method of its kind to prevent privacy risks caused of TEE in FL and the defense. First, we theoretically analyze the by the leakage of memory access patterns during aggregation leakage of memory access patterns, revealing the risk of sparsified in FL rigorously. This allows, for example, to enjoy utility gradients, which are commonly used in FL to enhance communication of CDP-FL without requiring a trusted server like LDP-efficiency and model accuracy. Second, we devise an inference FL. attack to link memory access patterns to sensitive information in the training dataset. Finally, we propose an oblivious yet efficient aggregation algorithm to prevent memory access pattern leakage.


Ripple Knowledge Graph Convolutional Networks For Recommendation Systems

arXiv.org Artificial Intelligence

Using knowledge graphs to assist deep learning models in making recommendation decisions has recently been proven to effectively improve the model's interpretability and accuracy. This paper introduces an end-to-end deep learning model, named RKGCN, which dynamically analyses each user's preferences and makes a recommendation of suitable items. It combines knowledge graphs on both the item side and user side to enrich their representations to maximize the utilization of the abundant information in knowledge graphs. RKGCN is able to offer more personalized and relevant recommendations in three different scenarios. The experimental results show the superior effectiveness of our model over 5 baseline models on three real-world datasets including movies, books, and music.


DPAF: Image Synthesis via Differentially Private Aggregation in Forward Phase

arXiv.org Artificial Intelligence

Differentially private synthetic data is a promising alternative for sensitive data release. Many differentially private generative models have been proposed in the literature. Unfortunately, they all suffer from the low utility of the synthetic data, particularly for images of high resolutions. Here, we propose DPAF, an effective differentially private generative model for high-dimensional image synthesis. Different from the prior private stochastic gradient descent-based methods that add Gaussian noises in the backward phase during the model training, DPAF adds a differentially private feature aggregation in the forward phase, bringing advantages, including the reduction of information loss in gradient clipping and low sensitivity for the aggregation. Moreover, as an improper batch size has an adverse impact on the utility of synthetic data, DPAF also tackles the problem of setting a proper batch size by proposing a novel training strategy that asymmetrically trains different parts of the discriminator. We extensively evaluate different methods on multiple image datasets (up to images of 128x128 resolution) to demonstrate the performance of DPAF.


FL-Market: Trading Private Models in Federated Learning

arXiv.org Artificial Intelligence

The difficulty in acquiring a sufficient amount of training data is a major bottleneck for machine learning (ML) based data analytics. Recently, commoditizing ML models has been proposed as an economical and moderate solution to ML-oriented data acquisition. However, existing model marketplaces assume that the broker can access data owners' private training data, which may not be realistic in practice. In this paper, to promote trustworthy data acquisition for ML tasks, we propose FL-Market, a locally private model marketplace that protects privacy not only against model buyers but also against the untrusted broker. FL-Market decouples ML from the need to centrally gather training data on the broker's side using federated learning, an emerging privacy-preserving ML paradigm in which data owners collaboratively train an ML model by uploading local gradients (to be aggregated into a global gradient for model updating). Then, FL-Market enables data owners to locally perturb their gradients by local differential privacy and thus further prevents privacy risks. To drive FL-Market, we propose a deep learning-empowered auction mechanism for intelligently deciding the local gradients' perturbation levels and an optimal aggregation mechanism for aggregating the perturbed gradients. Our auction and aggregation mechanisms can jointly maximize the global gradient's accuracy, which optimizes model buyers' utility. Our experiments verify the effectiveness of the proposed mechanisms.


Detecting Change Intervals with Isolation Distributional Kernel

arXiv.org Artificial Intelligence

Detecting abrupt changes in data distribution is one of the most significant tasks in streaming data analysis. Although many unsupervised Change-Point Detection (CPD) methods have been proposed recently to identify those changes, they still suffer from missing subtle changes, poor scalability, or/and sensitive to noise points. To meet these challenges, we are the first to generalise the CPD problem as a special case of the Change-Interval Detection (CID) problem. Then we propose a CID method, named iCID, based on a recent Isolation Distributional Kernel (IDK). iCID identifies the change interval if there is a high dissimilarity score between two non-homogeneous temporal adjacent intervals. The data-dependent property and finite feature map of IDK enabled iCID to efficiently identify various types of change points in data streams with the tolerance of noise points. Moreover, the proposed online and offline versions of iCID have the ability to optimise key parameter settings. The effectiveness and efficiency of iCID have been systematically verified on both synthetic and real-world datasets.


Exploring Sequence Feature Alignment for Domain Adaptive Detection Transformers

arXiv.org Artificial Intelligence

Detection transformers have recently shown promising object detection results and attracted increasing attention. However, how to develop effective domain adaptation techniques to improve its cross-domain performance remains unexplored and unclear. In this paper, we delve into this topic and empirically find that direct feature distribution alignment on the CNN backbone only brings limited improvements, as it does not guarantee domain-invariant sequence features in the transformer for prediction. To address this issue, we propose a novel Sequence Feature Alignment (SFA) method that is specially designed for the adaptation of detection transformers. Technically, SFA consists of a domain query-based feature alignment (DQFA) module and a token-wise feature alignment (TDA) module. In DQFA, a novel domain query is used to aggregate and align global context from the token sequence of both domains. DQFA reduces the domain discrepancy in global feature representations and object relations when deploying in the transformer encoder and decoder, respectively. Meanwhile, TDA aligns token features in the sequence from both domains, which reduces the domain gaps in local and instance-level feature representations in the transformer encoder and decoder, respectively. Besides, a novel bipartite matching consistency loss is proposed to enhance the feature discriminability for robust object detection. Experiments on three challenging benchmarks show that SFA outperforms state-of-the-art domain adaptive object detection methods. Code has been made available at: https://github.com/encounter1997/SFA.