Cao, Nieqing
BestMan: A Modular Mobile Manipulator Platform for Embodied AI with Unified Simulation-Hardware APIs
Yang, Kui, Cao, Nieqing, Ding, Yan, Chen, Chao
Embodied Artificial Intelligence (Embodied AI) emphasizes agents' ability to perceive, understand, and act in physical environments. Simulation platforms play a crucial role in advancing this field by enabling the validation and optimization of algorithms. However, existing platforms face challenges such as multilevel technical integration complexity, insufficient modularity, interface heterogeneity, and adaptation to diverse hardware. We present BestMan, a simulation platform based on PyBullet, designed to address these issues. BestMan introduces an integrated multilevel skill chain for seamless coordination across perception, planning, and control; a highly modular architecture for flexible algorithm integration; unified interfaces for smooth simulation-to-reality transfer; and a hardware-agnostic approach for adapting to various mobile manipulator configurations. These features collectively simplify development and enhance platform expandability, making BestMan a valuable tool for Embodied AI research.
Fast-UMI: A Scalable and Hardware-Independent Universal Manipulation Interface
Wu, Ziniu, Wang, Tianyu, Zhaxizhuoma, null, Guan, Chuyue, Jia, Zhongjie, Liang, Shuai, Song, Haoming, Qu, Delin, Wang, Dong, Wang, Zhigang, Cao, Nieqing, Ding, Yan, Zhao, Bin, Li, Xuelong
Collecting real-world manipulation trajectory data involving robotic arms is essential for developing general-purpose action policies in robotic manipulation, yet such data remains scarce. Existing methods face limitations such as high costs, labor intensity, hardware dependencies, and complex setup requirements involving SLAM algorithms. In this work, we introduce Fast-UMI, an interface-mediated manipulation system comprising two key components: a handheld device operated by humans for data collection and a robot-mounted device used during policy inference. Our approach employs a decoupled design compatible with a wide range of grippers while maintaining consistent observation perspectives, allowing models trained on handheld-collected data to be directly applied to real robots. By directly obtaining the end-effector pose using existing commercial hardware products, we eliminate the need for complex SLAM deployment and calibration, streamlining data processing. Fast-UMI provides supporting software tools for efficient robot learning data collection and conversion, facilitating rapid, plug-and-play functionality. This system offers an efficient and user-friendly tool for robotic learning data acquisition.
Integrating Action Knowledge and LLMs for Task Planning and Situation Handling in Open Worlds
Ding, Yan, Zhang, Xiaohan, Amiri, Saeid, Cao, Nieqing, Yang, Hao, Kaminski, Andy, Esselink, Chad, Zhang, Shiqi
Task planning systems have been developed to help robots use human knowledge (about actions) to complete long-horizon tasks. Most of them have been developed for "closed worlds" while assuming the robot is provided with complete world knowledge. However, the real world is generally open, and the robots frequently encounter unforeseen situations that can potentially break the planner's completeness. Could we leverage the recent advances on pre-trained Large Language Models (LLMs) to enable classical planning systems to deal with novel situations? This paper introduces a novel framework, called COWP, for open-world task planning and situation handling. COWP dynamically augments the robot's action knowledge, including the preconditions and effects of actions, with task-oriented commonsense knowledge. COWP embraces the openness from LLMs, and is grounded to specific domains via action knowledge. For systematic evaluations, we collected a dataset that includes 1,085 execution-time situations. Each situation corresponds to a state instance wherein a robot is potentially unable to complete a task using a solution that normally works. Experimental results show that our approach outperforms competitive baselines from the literature in the success rate of service tasks. Additionally, we have demonstrated COWP using a mobile manipulator. Supplementary materials are available at: https://cowplanning.github.io/