Goto

Collaborating Authors

 Cao, Liujuan


LightMotion: A Light and Tuning-free Method for Simulating Camera Motion in Video Generation

arXiv.org Artificial Intelligence

Existing camera motion-controlled video generation methods face computational bottlenecks in fine-tuning and inference. This paper proposes LightMotion, a light and tuning-free method for simulating camera motion in video generation. Operating in the latent space, it eliminates additional fine-tuning, inpainting, and depth estimation, making it more streamlined than existing methods. The endeavors of this paper comprise: (i) The latent space permutation operation effectively simulates various camera motions like panning, zooming, and rotation. (ii) The latent space resampling strategy combines background-aware sampling and cross-frame alignment to accurately fill new perspectives while maintaining coherence across frames. (iii) Our in-depth analysis shows that the permutation and resampling cause an SNR shift in latent space, leading to poor-quality generation. To address this, we propose latent space correction, which reintroduces noise during denoising to mitigate SNR shift and enhance video generation quality. Exhaustive experiments show that our LightMotion outperforms existing methods, both quantitatively and qualitatively.


Evolving High-Quality Rendering and Reconstruction in a Unified Framework with Contribution-Adaptive Regularization

arXiv.org Artificial Intelligence

Representing 3D scenes from multiview images is a core challenge in computer vision and graphics, which requires both precise rendering and accurate reconstruction. Recently, 3D Gaussian Splatting (3DGS) has garnered significant attention for its high-quality rendering and fast inference speed. Yet, due to the unstructured and irregular nature of Gaussian point clouds, ensuring accurate geometry reconstruction remains difficult. Existing methods primarily focus on geometry regularization, with common approaches including primitive-based and dual-model frameworks. However, the former suffers from inherent conflicts between rendering and reconstruction, while the latter is computationally and storage-intensive. To address these challenges, we propose CarGS, a unified model leveraging Contribution-adaptive regularization to achieve simultaneous, high-quality rendering and surface reconstruction. The essence of our framework is learning adaptive contribution for Gaussian primitives by squeezing the knowledge from geometry regularization into a compact MLP. Additionally, we introduce a geometry-guided densification strategy with clues from both normals and Signed Distance Fields (SDF) to improve the capability of capturing high-frequency details. Our design improves the mutual learning of the two tasks, meanwhile its unified structure does not require separate models as in dual-model based approaches, guaranteeing efficiency. Extensive experiments demonstrate the ability to achieve state-of-the-art (SOTA) results in both rendering fidelity and reconstruction accuracy while maintaining real-time speed and minimal storage size.


HRSAM: Efficiently Segment Anything in High-Resolution Images

arXiv.org Artificial Intelligence

The Segment Anything Model (SAM) has significantly advanced interactive segmentation but struggles with high-resolution images crucial for high-precision segmentation. This is primarily due to the quadratic space complexity of SAM-implemented attention and the length extrapolation issue in common global attention. This study proposes HRSAM that integrates Flash Attention and incorporates Plain, Shifted and newly proposed Cycle-scan Window (PSCWin) attention to address these issues. The shifted window attention is redesigned with padding to maintain consistent window sizes, enabling effective length extrapolation. The cycle-scan window attention adopts the recently developed State Space Models (SSMs) to ensure global information exchange with minimal computational overhead. Such window-based attention allows HRSAM to perform effective attention computations on scaled input images while maintaining low latency. Moreover, we further propose HRSAM++ that additionally employs a multi-scale strategy to enhance HRSAM's performance. The experiments on the high-precision segmentation datasets HQSeg44K and DAVIS show that high-resolution inputs enable the SAM-distilled HRSAM models to outperform the teacher model while maintaining lower latency. Compared to the SOTAs, HRSAM achieves a 1.56 improvement in interactive segmentation's NoC95 metric with only 31% of the latency. HRSAM++ further enhances the performance, achieving a 1.63 improvement in NoC95 with just 38% of the latency.


UniPTS: A Unified Framework for Proficient Post-Training Sparsity

arXiv.org Artificial Intelligence

Post-training Sparsity (PTS) is a recently emerged avenue that chases efficient network sparsity with limited data in need. Existing PTS methods, however, undergo significant performance degradation compared with traditional methods that retrain the sparse networks via the whole dataset, especially at high sparsity ratios. In this paper, we attempt to reconcile this disparity by transposing three cardinal factors that profoundly alter the performance of conventional sparsity into the context of PTS. Our endeavors particularly comprise (1) A base-decayed sparsity objective that promotes efficient knowledge transferring from dense network to the sparse counterpart. (2) A reducing-regrowing search algorithm designed to ascertain the optimal sparsity distribution while circumventing overfitting to the small calibration set in PTS. (3) The employment of dynamic sparse training predicated on the preceding aspects, aimed at comprehensively optimizing the sparsity structure while ensuring training stability. Our proposed framework, termed UniPTS, is validated to be much superior to existing PTS methods across extensive benchmarks. As an illustration, it amplifies the performance of POT, a recently proposed recipe, from 3.9% to 68.6% when pruning ResNet-50 at 90% sparsity ratio on ImageNet. We release the code of our paper at https://github.com/xjjxmu/UniPTS.


Cantor: Inspiring Multimodal Chain-of-Thought of MLLM

arXiv.org Artificial Intelligence

With the advent of large language models(LLMs) enhanced by the chain-of-thought(CoT) methodology, visual reasoning problem is usually decomposed into manageable sub-tasks and tackled sequentially with various external tools. However, such a paradigm faces the challenge of the potential "determining hallucinations" in decision-making due to insufficient visual information and the limitation of low-level perception tools that fail to provide abstract summaries necessary for comprehensive reasoning. We argue that converging visual context acquisition and logical reasoning is pivotal for tackling visual reasoning tasks. This paper delves into the realm of multimodal CoT to solve intricate visual reasoning tasks with multimodal large language models(MLLMs) and their cognitive capability. To this end, we propose an innovative multimodal CoT framework, termed Cantor, characterized by a perception-decision architecture. Cantor first acts as a decision generator and integrates visual inputs to analyze the image and problem, ensuring a closer alignment with the actual context. Furthermore, Cantor leverages the advanced cognitive functions of MLLMs to perform as multifaceted experts for deriving higher-level information, enhancing the CoT generation process. Our extensive experiments demonstrate the efficacy of the proposed framework, showing significant improvements in multimodal CoT performance across two complex visual reasoning datasets, without necessitating fine-tuning or ground-truth rationales. Project Page: https://ggg0919.github.io/cantor/ .


CutDiffusion: A Simple, Fast, Cheap, and Strong Diffusion Extrapolation Method

arXiv.org Artificial Intelligence

Transforming large pre-trained low-resolution diffusion models to cater to higher-resolution demands, i.e., diffusion extrapolation, significantly improves diffusion adaptability. We propose tuning-free CutDiffusion, aimed at simplifying and accelerating the diffusion extrapolation process, making it more affordable and improving performance. CutDiffusion abides by the existing patch-wise extrapolation but cuts a standard patch diffusion process into an initial phase focused on comprehensive structure denoising and a subsequent phase dedicated to specific detail refinement. Comprehensive experiments highlight the numerous almighty advantages of CutDiffusion: (1) simple method construction that enables a concise higher-resolution diffusion process without third-party engagement; (2) fast inference speed achieved through a single-step higher-resolution diffusion process, and fewer inference patches required; (3) cheap GPU cost resulting from patch-wise inference and fewer patches during the comprehensive structure denoising; (4) strong generation performance, stemming from the emphasis on specific detail refinement.


Supervised Online Hashing via Similarity Distribution Learning

arXiv.org Artificial Intelligence

Hashing based visual search has attracted extensive research Online hashing has attracted extensive research attention attention in recent years due to the rapid growth of when facing streaming data. Most online hashing visual data on the Internet [7, 33, 8, 26, 12, 13, 30, 32, 25, methods, learning binary codes based on pairwise similarities 35, 27]. In various scenarios, online hashing has become of training instances, fail to capture the semantic relationship, a hot topic due to the emergence of handling the streaming and suffer from a poor generalization in largescale data, which aims to resolve an online retrieval task by applications due to large variations. In this paper, we updating the hash functions from sequentially arriving data propose to model the similarity distributions between the input instances. On one hand, online hashing takes advantages data and the hashing codes, upon which a novel supervised of traditional offline hashing methods, i.e., low storage cost online hashing method, dubbed as Similarity Distribution and efficiency of pairwise distance computation in the Hamming based Online Hashing (SDOH), is proposed, to keep space. On the other hand, it also merits in training the intrinsic semantic relationship in the produced Hamming efficiency and scalability for large-scale applications, since space. Specifically, we first transform the discrete the hash functions are updated instantly and solely based on similarity matrix into a probability matrix via a Gaussianbased the current streaming data, which is superior to traditional normalization to address the extremely imbalanced hashing methods based on a hashing model entirely trained distribution issue. And then, we introduce a scaling Student from scratch.


Towards Domain Adaptive Vehicle Detection in Satellite Image by Supervised Super-Resolution Transfer

AAAI Conferences

Vehicle detection in satellite image has attracted extensive research attentions with various emerging applications.However, the detector performance has been significantly degenerated due to the low resolutions of satellite images, as well as the limited training data.In this paper, a robust domain-adaptive vehicle detection framework is proposed to bypass both problems.Our innovation is to transfer the detector learning to the high-resolution aerial image domain,where rich supervision exists and robust detectors can be trained.To this end, we first propose a super-resolution algorithm using coupled dictionary learning to ``augment'' the satellite image region being tested into the aerial domain.Notably, linear detection loss is embedded into the dictionary learning, which enforces the augmented region to be sensitive to the subsequent detector training.Second, to cope with the domain changes, we propose an instance-wised detection using Exemplar Support Vector Machines (E-SVMs), which well handles the intra-class and imaging variations like scales, rotations, and occlusions.With comprehensive experiments on large-scale satellite image collections, we demonstrate that the proposed framework can significantly boost the detection accuracy over several state-of-the-arts.