Plotting

 Cao, Lang


Process Reward Modeling with Entropy-Driven Uncertainty

arXiv.org Artificial Intelligence

This paper presents the Entropy-Driven Unified Process Reward Model (EDU-PRM), a novel framework that approximates state-of-the-art performance in process supervision while drastically reducing training costs. EDU-PRM introduces an entropy-guided dynamic step partitioning mechanism, using logit distribution entropy to pinpoint high-uncertainty regions during token generation dynamically. This self-assessment capability enables precise step-level feedback without manual fine-grained annotation, addressing a critical challenge in process supervision. Experiments on the Qwen2.5-72B model with only 7,500 EDU-PRM-generated training queries demonstrate accuracy closely approximating the full Qwen2.5-72B-PRM (71.1% vs. 71.6%), achieving a 98% reduction in query cost compared to prior methods. This work establishes EDU-PRM as an efficient approach for scalable process reward model training.


TablePilot: Recommending Human-Preferred Tabular Data Analysis with Large Language Models

arXiv.org Artificial Intelligence

Tabular data analysis is crucial in many scenarios, yet efficiently identifying the most relevant data analysis queries and results for a new table remains a significant challenge. The complexity of tabular data, diverse analytical operations, and the demand for high-quality analysis make the process tedious. To address these challenges, we aim to recommend query-code-result triplets tailored for new tables in tabular data analysis workflows. In this paper, we present TablePilot, a pioneering tabular data analysis framework leveraging large language models to autonomously generate comprehensive and superior analytical results without relying on user profiles or prior interactions. The framework incorporates key designs in analysis preparation and analysis optimization to enhance accuracy. Additionally, we propose Rec-Align, a novel method to further improve recommendation quality and better align with human preferences. Experiments on DART, a dataset specifically designed for comprehensive tabular data analysis recommendation, demonstrate the effectiveness of our framework. Based on GPT-4o, the tuned TablePilot achieves 77.0% top-5 recommendation recall. Human evaluations further highlight its effectiveness in optimizing tabular data analysis workflows.


RAS: Retrieval-And-Structuring for Knowledge-Intensive LLM Generation

arXiv.org Artificial Intelligence

Retrieval-augmented language models often struggle with knowledge-intensive tasks due to inefficient retrieval, unstructured knowledge integration, and single-pass architectures. We present Retrieval-And-Structuring (RAS), a novel framework that dynamically constructs and reasons over query-specific knowledge graphs through iterative retrieval and structuring. RAS introduces four key technical innovations: (1) a themescoped retrieval mechanism that efficiently narrows the search space while maintaining retrieval quality, (2) an action planning module that determines knowledge needs and generates focused sub-queries, (3) a dynamic knowledge structuring approach that converts retrieved text into an evolving knowledge graph, and (4) a graph-augmented answering component that leverages the accumulated structured information. Our framework achieves state-of-the-art performance, surpassing leading baselines by 6.4% with open-source language models and 7.0% with proprietary models on seven knowledge-intensive generation datasets across all evaluation metrics. Detailed ablation studies verify the contribution of each technical component to the overall system performance.


TableMaster: A Recipe to Advance Table Understanding with Language Models

arXiv.org Artificial Intelligence

Tables serve as a fundamental format for representing structured relational data. While current language models (LMs) excel at many text-based tasks, they still face challenges in table understanding due to the complex characteristics of tabular data, such as their structured nature. In this paper, we aim to enhance LMs for improved table understanding. We identify four key challenges: 1) difficulty in locating target data, 2) deficiency in table semantics, 3) numerical inaccuracies in textual reasoning, and 4) semantic inflexibility in symbolic reasoning. To address these issues, we propose TableMaster, a recipe and comprehensive framework that integrates multiple solutions to overcome these obstacles. TableMaster first extracts relevant table content and verbalizes it with enriched semantic context. Additionally, we introduce adaptive reasoning, a flexible approach that dynamically adjusts between textual and symbolic reasoning, tailoring the reasoning process to each query. Extensive analyses and experiments demonstrate our findings and the effectiveness of TableMaster. On the WikiTQ dataset, TableMaster achieves an accuracy of 78.13% using GPT-4o-mini, surpassing existing baselines.


A foundation model for human-AI collaboration in medical literature mining

arXiv.org Artificial Intelligence

Systematic literature review is essential for evidence-based medicine, requiring comprehensive analysis of clinical trial publications. However, the application of artificial intelligence (AI) models for medical literature mining has been limited by insufficient training and evaluation across broad therapeutic areas and diverse tasks. Here, we present LEADS, an AI foundation model for study search, screening, and data extraction from medical literature. The model is trained on 633,759 instruction data points in LEADSInstruct, curated from 21,335 systematic reviews, 453,625 clinical trial publications, and 27,015 clinical trial registries. We showed that LEADS demonstrates consistent improvements over four cutting-edge generic large language models (LLMs) on six tasks. Furthermore, LEADS enhances expert workflows by providing supportive references following expert requests, streamlining processes while maintaining high-quality results. A study with 16 clinicians and medical researchers from 14 different institutions revealed that experts collaborating with LEADS achieved a recall of 0.81 compared to 0.77 experts working alone in study selection, with a time savings of 22.6%. In data extraction tasks, experts using LEADS achieved an accuracy of 0.85 versus 0.80 without using LEADS, alongside a 26.9% time savings. These findings highlight the potential of specialized medical literature foundation models to outperform generic models, delivering significant quality and efficiency benefits when integrated into expert workflows for medical literature mining.


Step Guided Reasoning: Improving Mathematical Reasoning using Guidance Generation and Step Reasoning

arXiv.org Artificial Intelligence

Mathematical reasoning has been a challenging aspect of large language models (LLMs). However, the introduction of step-by-step Chain-of-Thought (CoT) inference has significantly advanced the mathematical capabilities of LLMs. Despite this progress, current approaches either require massive inference datasets as training datasets or rely on few-shot methods that often sacrifice accuracy. To address this bottleneck in mathematical reasoning, we propose a novel method called Step Guidance Reasoning without involving further model fine-tuning. In this approach, LLMs reflect on small reasoning steps -- similar to how humans deliberate on and focus attention on what to do next. By incorporating this reflective process into the inference stage, LLMs can effectively guide their reasoning from one step to the next. Our method significantly improved the math performance, raising the accuracy on the AMC23 dataset from 30% to 57.5%, a relative improvement of 91.7%, and on the sampled level 5 problem of the MATH dataset, we achieved a relative accuracy improvement of 55.8%, increasing from 43% to 67%.


Accelerating Clinical Evidence Synthesis with Large Language Models

arXiv.org Artificial Intelligence

Automatic medical discovery by AI is a dream of many. One step toward that goal is to create an AI model to understand clinical studies and synthesize clinical evidence from the literature. Clinical evidence synthesis currently relies on systematic reviews of clinical trials and retrospective analyses from medical literature. However, the rapid expansion of publications presents challenges in efficiently identifying, summarizing, and updating evidence. We introduce TrialMind, a generative AI-based pipeline for conducting medical systematic reviews, encompassing study search, screening, and data extraction phases. We utilize large language models (LLMs) to drive each pipeline component while incorporating human expert oversight to minimize errors. To facilitate evaluation, we also create a benchmark dataset TrialReviewBench, a custom dataset with 870 annotated clinical studies from 25 meta-analysis papers across various medical treatments. Our results demonstrate that TrialMind significantly improves the literature review process, achieving high recall rates (0.897-1.000) in study searching from over 20 million PubMed studies and outperforming traditional language model embeddings-based methods in screening (Recall@20 of 0.227-0.246 vs. 0.000-0.102). Furthermore, our approach surpasses direct GPT-4 performance in result extraction, with accuracy ranging from 0.65 to 0.84. We also support clinical evidence synthesis in forest plots, as validated by eight human annotators who preferred TrialMind over the GPT-4 baseline with a winning rate of 62.5%-100% across the involved reviews. Our findings suggest that an LLM-based clinical evidence synthesis approach, such as TrialMind, can enable reliable and high-quality clinical evidence synthesis to improve clinical research efficiency.


KG-FIT: Knowledge Graph Fine-Tuning Upon Open-World Knowledge

arXiv.org Artificial Intelligence

Knowledge Graph Embedding (KGE) techniques are crucial in learning compact representations of entities and relations within a knowledge graph, facilitating efficient reasoning and knowledge discovery. While existing methods typically focus either on training KGE models solely based on graph structure or fine-tuning pre-trained language models with classification data in KG, KG-FIT leverages LLM-guided refinement to construct a semantically coherent hierarchical structure of entity clusters. By incorporating this hierarchical knowledge along with textual information during the fine-tuning process, KG-FIT effectively captures both global semantics from the LLM and local semantics from the KG. Extensive experiments on the benchmark datasets FB15K-237, YAGO3-10, and PrimeKG demonstrate the superiority of KG-FIT over state-of-the-art pre-trained language model-based methods, achieving improvements of 14.4%, 13.5%, and 11.9% in the Hits@10 metric for the link prediction task, respectively. Furthermore, KG-FIT yields substantial performance gains of 12.6%, 6.7%, and 17.7% compared to the structure-based base models upon which it is built. These results highlight the effectiveness of KG-FIT in incorporating open-world knowledge from LLMs to significantly enhance the expressiveness and informativeness of KG embeddings.


AutoRD: An Automatic and End-to-End System for Rare Disease Knowledge Graph Construction Based on Ontologies-enhanced Large Language Models

arXiv.org Artificial Intelligence

Objectives: Our objective is to create an end-to-end system called AutoRD, which automates extracting information from clinical text about rare diseases. We have conducted various tests to evaluate the performance of AutoRD and highlighted its strengths and limitations in this paper. Materials and Methods: Our system, AutoRD, is a software pipeline involving data preprocessing, entity extraction, relation extraction, entity calibration, and knowledge graph construction. We implement this using large language models and medical knowledge graphs developed from open-source medical ontologies. We quantitatively evaluate our system on entity extraction, relation extraction, and the performance of knowledge graph construction. Results: AutoRD achieves an overall F1 score of 47.3%, a 14.4% improvement compared to the base LLM. In detail, AutoRD achieves an overall entity extraction F1 score of 56.1% (rare_disease: 83.5%, disease: 35.8%, symptom_and_sign: 46.1%, anaphor: 67.5%) and an overall relation extraction F1 score of 38.6% (produces: 34.7%, increases_risk_of: 12.4%, is_a: 37.4%, is_acronym: 44.1%, is_synonym: 16.3%, anaphora: 57.5%). Our qualitative experiment also demonstrates that the performance in constructing the knowledge graph is commendable. Discussion: AutoRD demonstrates the potential of LLM applications in rare disease detection. This improvement is attributed to several design, including the integration of ontologies-enhanced LLMs. Conclusion: AutoRD is an automated end-to-end system for extracting rare disease information from text to build knowledge graphs. It uses ontologies-enhanced LLMs for a robust medical knowledge base. The superior performance of AutoRD is validated by experimental evaluations, demonstrating the potential of LLMs in healthcare.


PILOT: Legal Case Outcome Prediction with Case Law

arXiv.org Artificial Intelligence

Machine learning shows promise in predicting the outcome of legal cases, but most research has concentrated on civil law cases rather than case law systems. We identified two unique challenges in making legal case outcome predictions with case law. First, it is crucial to identify relevant precedent cases that serve as fundamental evidence for judges during decision-making. Second, it is necessary to consider the evolution of legal principles over time, as early cases may adhere to different legal contexts. In this paper, we proposed a new model named PILOT (PredictIng Legal case OuTcome) for case outcome prediction. It comprises two modules for relevant case retrieval and temporal pattern handling, respectively. To benchmark the performance of existing legal case outcome prediction models, we curated a dataset from a large-scale case law database. We demonstrate the importance of accurately identifying precedent cases and mitigating the temporal shift when making predictions for case law, as our method shows a significant improvement over the prior methods that focus on civil law case outcome predictions.