Cao, Junjie
UVCG: Leveraging Temporal Consistency for Universal Video Protection
Li, KaiZhou, Gu, Jindong, Yu, Xinchun, Cao, Junjie, Tang, Yansong, Zhang, Xiao-Ping
The security risks of AI-driven video editing have garnered significant attention. Although recent studies indicate that adding perturbations to images can protect them from malicious edits, directly applying image-based methods to perturb each frame in a video becomes ineffective, as video editing techniques leverage the consistency of inter-frame information to restore individually perturbed content. To address this challenge, we leverage the temporal consistency of video content to propose a straightforward and efficient, yet highly effective and broadly applicable approach, Universal Video Consistency Guard (UVCG). UVCG embeds the content of another video(target video) within a protected video by introducing continuous, imperceptible perturbations which has the ability to force the encoder of editing models to map continuous inputs to misaligned continuous outputs, thereby inhibiting the generation of videos consistent with the intended textual prompts. Additionally leveraging similarity in perturbations between adjacent frames, we improve the computational efficiency of perturbation generation by employing a perturbation-reuse strategy. We applied UVCG across various versions of Latent Diffusion Models (LDM) and assessed its effectiveness and generalizability across multiple LDM-based editing pipelines. The results confirm the effectiveness, transferability, and efficiency of our approach in safeguarding video content from unauthorized modifications.
Hierarchical Search-Based Cooperative Motion Planning
Wu, Yuchen, Yang, Yifan, Xu, Gang, Cao, Junjie, Chen, Yansong, Wen, Licheng, Liu, Yong
Cooperative path planning, a crucial aspect of multi-agent systems research, serves a variety of sectors, including military, agriculture, and industry. Many existing algorithms, however, come with certain limitations, such as simplified kinematic models and inadequate support for multiple group scenarios. Focusing on the planning problem associated with a nonholonomic Ackermann model for Unmanned Ground Vehicles (UGV), we propose a leaderless, hierarchical Search-Based Cooperative Motion Planning (SCMP) method. The high-level utilizes a binary conflict search tree to minimize runtime, while the low-level fabricates kinematically feasible, collision-free paths that are shape-constrained. Our algorithm can adapt to scenarios featuring multiple groups with different shapes, outlier agents, and elaborate obstacles. We conduct algorithm comparisons, performance testing, simulation, and real-world testing, verifying the effectiveness and applicability of our algorithm. The implementation of our method will be open-sourced at https://github.com/WYCUniverStar/SCMP.
LangGFM: A Large Language Model Alone Can be a Powerful Graph Foundation Model
Lin, Tianqianjin, Yan, Pengwei, Song, Kaisong, Jiang, Zhuoren, Kang, Yangyang, Lin, Jun, Yuan, Weikang, Cao, Junjie, Sun, Changlong, Liu, Xiaozhong
Graph foundation models (GFMs) have recently gained significant attention. However, the unique data processing and evaluation setups employed by different studies hinder a deeper understanding of their progress. Additionally, current research tends to focus on specific subsets of graph learning tasks, such as structural tasks, node-level tasks, or classification tasks. As a result, they often incorporate specialized modules tailored to particular task types, losing their applicability to other graph learning tasks and contradicting the original intent of foundation models to be universal. Therefore, to enhance consistency, coverage, and diversity across domains, tasks, and research interests within the graph learning community in the evaluation of GFMs, we propose GFMBench-a systematic and comprehensive benchmark comprising 26 datasets. Moreover, we introduce LangGFM, a novel GFM that relies entirely on large language models. By revisiting and exploring the effective graph textualization principles, as well as repurposing successful techniques from graph augmentation and graph self-supervised learning within the language space, LangGFM achieves performance on par with or exceeding the state of the art across GFMBench, which can offer us new perspectives, experiences, and baselines to drive forward the evolution of GFMs.
Can Large Language Models Grasp Legal Theories? Enhance Legal Reasoning with Insights from Multi-Agent Collaboration
Yuan, Weikang, Cao, Junjie, Jiang, Zhuoren, Kang, Yangyang, Lin, Jun, Song, Kaisong, lin, tianqianjin, Yan, Pengwei, Sun, Changlong, Liu, Xiaozhong
Large Language Models (LLMs) could struggle to fully understand legal theories and perform complex legal reasoning tasks. In this study, we introduce a challenging task (confusing charge prediction) to better evaluate LLMs' understanding of legal theories and reasoning capabilities. We also propose a novel framework: Multi-Agent framework for improving complex Legal Reasoning capability (MALR). MALR employs non-parametric learning, encouraging LLMs to automatically decompose complex legal tasks and mimic human learning process to extract insights from legal rules, helping LLMs better understand legal theories and enhance their legal reasoning abilities. Extensive experiments on multiple real-world datasets demonstrate that the proposed framework effectively addresses complex reasoning issues in practical scenarios, paving the way for more reliable applications in the legal domain.
Entity Relation Extraction as Dependency Parsing in Visually Rich Documents
Zhang, Yue, Zhang, Bo, Wang, Rui, Cao, Junjie, Li, Chen, Bao, Zuyi
Previous works on key information extraction from visually rich documents (VRDs) mainly focus on labeling the text within each bounding box (i.e., semantic entity), while the relations in-between are largely unexplored. In this paper, we adapt the popular dependency parsing model, the biaffine parser, to this entity relation extraction task. Being different from the original dependency parsing model which recognizes dependency relations between words, we identify relations between groups of words with layout information instead. We have compared different representations of the semantic entity, different VRD encoders, and different relation decoders. The results demonstrate that our proposed model achieves 65.96% F1 score on the FUNSD dataset. As for the real-world application, our model has been applied to the in-house customs data, achieving reliable performance in the production setting.
HILONet: Hierarchical Imitation Learning from Non-Aligned Observations
Liu, Shanqi, Cao, Junjie, Chen, Wenzhou, Wen, Licheng, Liu, Yong
It is challenging learning from demonstrated observation-only trajectories in a non-time-aligned environment because most imitation learning methods aim to imitate experts by following the demonstration step-by-step. However, aligned demonstrations are seldom obtainable in real-world scenarios. In this work, we propose a new imitation learning approach called Hierarchical Imitation Learning from Observation(HILONet), which adopts a hierarchical structure to choose feasible sub-goals from demonstrated observations dynamically. Our method can solve all kinds of tasks by achieving these sub-goals, whether it has a single goal position or not. We also present three different ways to increase sample efficiency in the hierarchical structure. We conduct extensive experiments using several environments. The results show the improvement in both performance and learning efficiency.