Goto

Collaborating Authors

 Cao, Jiezhang


MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis

arXiv.org Artificial Intelligence

Artificial Intelligence (AI) has demonstrated significant capabilities in various fields, and in areas such as human-computer interaction (HCI), embodied intelligence, and the design and animation of virtual digital humans, both practitioners and users are increasingly concerned with AI's ability to understand and express emotion. Consequently, the question of whether AI can accurately interpret human emotions remains a critical challenge. To date, two primary classes of AI models have been involved in human emotion analysis: generative models and Multimodal Large Language Models (MLLMs). To assess the emotional capabilities of these two classes of models, this study introduces MEMO-Bench, a comprehensive benchmark consisting of 7,145 portraits, each depicting one of six different emotions, generated by 12 Text-to-Image (T2I) models. Unlike previous works, MEMO-Bench provides a framework for evaluating both T2I models and MLLMs in the context of sentiment analysis. Additionally, a progressive evaluation approach is employed, moving from coarse-grained to fine-grained metrics, to offer a more detailed and comprehensive assessment of the sentiment analysis capabilities of MLLMs. The experimental results demonstrate that existing T2I models are more effective at generating positive emotions than negative ones. Meanwhile, although MLLMs show a certain degree of effectiveness in distinguishing and recognizing human emotions, they fall short of human-level accuracy, particularly in fine-grained emotion analysis. The MEMO-Bench will be made publicly available to support further research in this area.


Internal Wasserstein Distance for Adversarial Attack and Defense

arXiv.org Artificial Intelligence

Deep neural networks (DNNs) are known to be vulnerable to adversarial attacks that would trigger misclassification of DNNs but may be imperceptible to human perception. Adversarial defense has been an important way to improve the robustness of DNNs. Existing attack methods often construct adversarial examples relying on some metrics like the $\ell_p$ distance to perturb samples. However, these metrics can be insufficient to conduct adversarial attacks due to their limited perturbations. In this paper, we propose a new internal Wasserstein distance (IWD) to capture the semantic similarity of two samples, and thus it helps to obtain larger perturbations than currently used metrics such as the $\ell_p$ distance. We then apply the internal Wasserstein distance to perform adversarial attack and defense. In particular, we develop a novel attack method relying on IWD to calculate the similarities between an image and its adversarial examples. In this way, we can generate diverse and semantically similar adversarial examples that are more difficult to defend by existing defense methods. Moreover, we devise a new defense method relying on IWD to learn robust models against unseen adversarial examples. We provide both thorough theoretical and empirical evidence to support our methods.


Improving Generative Adversarial Networks with Local Coordinate Coding

arXiv.org Machine Learning

Generative adversarial networks (GANs) have shown remarkable success in generating realistic data from some predefined prior distribution (e.g., Gaussian noises). However, such prior distribution is often independent of real data and thus may lose semantic information (e.g., geometric structure or content in images) of data. In practice, the semantic information might be represented by some latent distribution learned from data. However, such latent distribution may incur difficulties in data sampling for GANs. In this paper, rather than sampling from the predefined prior distribution, we propose an LCCGAN model with local coordinate coding (LCC) to improve the performance of generating data. First, we propose an LCC sampling method in LCCGAN to sample meaningful points from the latent manifold. With the LCC sampling method, we can exploit the local information on the latent manifold and thus produce new data with promising quality. Second, we propose an improved version, namely LCCGAN++, by introducing a higher-order term in the generator approximation. This term is able to achieve better approximation and thus further improve the performance. More critically, we derive the generalization bound for both LCCGAN and LCCGAN++ and prove that a low-dimensional input is sufficient to achieve good generalization performance. Extensive experiments on four benchmark datasets demonstrate the superiority of the proposed method over existing GANs.