Cao, Hao
Accurate Cutting-point Estimation for Robotic Lychee Harvesting through Geometry-aware Learning
Zhang, Gengming, Cao, Hao, Hu, Kewei, Pan, Yaoqiang, Deng, Yuqin, Wang, Hongjun, Kang, Hanwen
Accurately identifying lychee-picking points in unstructured orchard environments and obtaining their coordinate locations is critical to the success of lychee-picking robots. However, traditional two-dimensional (2D) image-based object detection methods often struggle due to the complex geometric structures of branches, leaves and fruits, leading to incorrect determination of lychee picking points. In this study, we propose a Fcaf3d-lychee network model specifically designed for the accurate localisation of lychee picking points. Point cloud data of lychee picking points in natural environments are acquired using Microsoft's Azure Kinect DK time-of-flight (TOF) camera through multi-view stitching. We augment the Fully Convolutional Anchor-Free 3D Object Detection (Fcaf3d) model with a squeeze-and-excitation(SE) module, which exploits human visual attention mechanisms for improved feature extraction of lychee picking points. The trained network model is evaluated on a test set of lychee-picking locations and achieves an impressive F1 score of 88.57%, significantly outperforming existing models. Subsequent three-dimensional (3D) position detection of picking points in real lychee orchard environments yields high accuracy, even under varying degrees of occlusion. Localisation errors of lychee picking points are within 1.5 cm in all directions, demonstrating the robustness and generality of the model.
A Novel Perception and Semantic Mapping Method for Robot Autonomy in Orchards
Pan, Yaoqiang, Cao, Hao, Hu, Kewei, Kang, Hanwen, Wang, Xing
Agricultural robots must navigate challenging dynamic and semi-structured environments. Recently, environmental modeling using LiDAR-based SLAM has shown promise in providing highly accurate geometry. However, how this chaotic environmental information can be used to achieve effective robot automation in the agricultural sector remains unexplored. In this study, we propose a novel semantic mapping and navigation framework for achieving robotic autonomy in orchards. It consists of two main components: a semantic processing module and a navigation module. First, we present a novel 3D detection network architecture, 3D-ODN, which can accurately process object instance information from point clouds. Second, we develop a framework to construct the visibility map by incorporating semantic information and terrain analysis. By combining these two critical components, our framework is evaluated in a number of key horticultural production scenarios, including a robotic system for in-situ phenotyping and daily monitoring, and a selective harvesting system in apple orchards. The experimental results show that our method can ensure high accuracy in understanding the environment and enable reliable robot autonomy in agricultural environments.