Goto

Collaborating Authors

 Cao, Hanwen


Multi-Robot Object SLAM using Distributed Variational Inference

arXiv.org Artificial Intelligence

Multi-robot simultaneous localization and mapping (SLAM) enables a robot team to achieve coordinated tasks relying on a common map. However, centralized processing of robot observations is undesirable because it creates a single point of failure and requires pre-existing infrastructure and significant multi-hop communication throughput. This paper formulates multi-robot object SLAM as a variational inference problem over a communication graph. We impose a consensus constraint on the objects maintained by different nodes to ensure agreement on a common map. To solve the problem, we develop a distributed mirror descent algorithm with a regularization term enforcing consensus. Using Gaussian distributions in the algorithm, we derive a distributed multi-state constraint Kalman filter (MSCKF) for multi-robot object SLAM. Experiments on real and simulated data show that our method improves the trajectory and object estimates, compared to individual-robot SLAM, while achieving better scaling to large robot teams, compared to centralized multi-robot SLAM. Code is available at https://github.com/intrepidChw/distributed_msckf.


Two-Stage Grasping: A New Bin Picking Framework for Small Objects

arXiv.org Artificial Intelligence

This paper proposes a novel bin picking framework, two-stage grasping, aiming at precise grasping of cluttered small objects. Object density estimation and rough grasping are conducted in the first stage. Fine segmentation, detection, grasping, and pushing are performed in the second stage. A small object bin picking system has been realized to exhibit the concept of two-stage grasping. Experiments have shown the effectiveness of the proposed framework. Unlike traditional bin picking methods focusing on vision-based grasping planning using classic frameworks, the challenges of picking cluttered small objects can be solved by the proposed new framework with simple vision detection and planning.


Fuzzy-Depth Objects Grasping Based on FSG Algorithm and a Soft Robotic Hand

arXiv.org Artificial Intelligence

Autonomous grasping is an important factor for robots physically interacting with the environment and executing versatile tasks. However, a universally applicable, cost-effective, and rapidly deployable autonomous grasping approach is still limited by those target objects with fuzzy-depth information. Examples are transparent, specular, flat, and small objects whose depth is difficult to be accurately sensed. In this work, we present a solution to those fuzzy-depth objects. The framework of our approach includes two major components: one is a soft robotic hand and the other one is a Fuzzy-depth Soft Grasping (FSG) algorithm. The soft hand is replaceable for most existing soft hands/grippers with body compliance. FSG algorithm exploits both RGB and depth images to predict grasps while not trying to reconstruct the whole scene. Two grasping primitives are designed to further increase robustness. The proposed method outperforms reference baselines in unseen fuzzy-depth objects grasping experiments (84% success rate).


Complex Sequential Understanding through the Awareness of Spatial and Temporal Concepts

arXiv.org Artificial Intelligence

Understanding sequential information is a fundamental task for artificial intelligence. Current neural networks attempt to learn spatial and temporal information as a whole, limited their abilities to represent large scale spatial representations over long-range sequences. Here, we introduce a new modeling strategy called Semi-Coupled Structure (SCS), which consists of deep neural networks that decouple the complex spatial and temporal concepts learning. Semi-Coupled Structure can learn to implicitly separate input information into independent parts and process these parts respectively. Experiments demonstrate that a Semi-Coupled Structure can successfully annotate the outline of an object in images sequentially and perform video action recognition. For sequence-to-sequence problems, a Semi-Coupled Structure can predict future meteorological radar echo images based on observed images. Taken together, our results demonstrate that a Semi-Coupled Structure has the capacity to improve the performance of LSTM-like models on large scale sequential tasks.