Cao, Chenjie
Local Consensus Enhanced Siamese Network with Reciprocal Loss for Two-view Correspondence Learning
Wang, Linbo, Wu, Jing, Fang, Xianyong, Liu, Zhengyi, Cao, Chenjie, Fu, Yanwei
Recent studies of two-view correspondence learning usually establish an end-to-end network to jointly predict correspondence reliability and relative pose. We improve such a framework from two aspects. First, we propose a Local Feature Consensus (LFC) plugin block to augment the features of existing models. Given a correspondence feature, the block augments its neighboring features with mutual neighborhood consensus and aggregates them to produce an enhanced feature. As inliers obey a uniform cross-view transformation and share more consistent learned features than outliers, feature consensus strengthens inlier correlation and suppresses outlier distraction, which makes output features more discriminative for classifying inliers/outliers. Second, existing approaches supervise network training with the ground truth correspondences and essential matrix projecting one image to the other for an input image pair, without considering the information from the reverse mapping. We extend existing models to a Siamese network with a reciprocal loss that exploits the supervision of mutual projection, which considerably promotes the matching performance without introducing additional model parameters. Building upon MSA-Net, we implement the two proposals and experimentally achieve state-of-the-art performance on benchmark datasets.
Multimodal Emotion Recognition for One-Minute-Gradual Emotion Challenge
Zheng, Ziqi, Cao, Chenjie, Chen, Xingwei, Xu, Guoqiang
The continuous dimensional emotion modelled by arousal and valence can depict complex changes of emotions. In this paper, we present our works on arousal and valence predictions for One-Minute-Gradual (OMG) Emotion Challenge. Multimodal representations are first extracted from videos using a variety of acoustic, video and textual models and support vector machine (SVM) is then used for fusion of multimodal signals to make final predictions. Our solution achieves Concordant Correlation Coefficient (CCC) scores of 0.397 and 0.520 on arousal and valence respectively for the validation dataset, which outperforms the baseline systems with the best CCC scores of 0.15 and 0.23 on arousal and valence by a large margin.