Goto

Collaborating Authors

 Cammerer, Sebastian


Learning Radio Environments by Differentiable Ray Tracing

arXiv.org Artificial Intelligence

Ray tracing (RT) is instrumental in 6G research in order to generate spatially-consistent and environment-specific channel impulse responses (CIRs). While acquiring accurate scene geometries is now relatively straightforward, determining material characteristics requires precise calibration using channel measurements. We therefore introduce a novel gradient-based calibration method, complemented by differentiable parametrizations of material properties, scattering and antenna patterns. Our method seamlessly integrates with differentiable ray tracers that enable the computation of derivatives of CIRs with respect to these parameters. Essentially, we approach field computation as a large computational graph wherein parameters are trainable akin to weights of a neural network (NN). We have validated our method using both synthetic data and real-world indoor channel measurements, employing a distributed multiple-input multiple-output (MIMO) channel sounder.


Sionna RT: Differentiable Ray Tracing for Radio Propagation Modeling

arXiv.org Artificial Intelligence

Abstract--Sionna is a GPU-accelerated open-source library for link-level simulations based on TensorFlow. This unique feature allows for the computation of gradients of the channel impulse response and other related quantities with respect to many system and environment parameters, such as material properties, antenna patterns, array geometries, as well as transmitter and receiver orientations and positions. In this paper, we outline the key components of Sionna RT and showcase example applications such as learning radio materials and optimizing transmitter orientations by gradient descent. In the future, we will include the configuration use-cases of the recently started 3GPP study-item on AI/ML of RIS and multiple other ray-object interactions. RT scene and the channel impulse response (CIR) is required which the widely used stochastic channel models such as [7] Sionna RT is a ray tracing extension for radio propagation cannot provide.


Sionna: An Open-Source Library for Next-Generation Physical Layer Research

arXiv.org Artificial Intelligence

Sionna is a GPU-accelerated open-source library for link-level simulations based on TensorFlow. It enables the rapid prototyping of complex communication system architectures and provides native support for the integration of neural networks. Sionna implements a wide breadth of carefully tested state-of-the-art algorithms that can be used for benchmarking and end-to-end performance evaluation. This allows researchers to focus on their research, making it more impactful and reproducible, while saving time implementing components outside their area of expertise. This white paper provides a brief introduction to Sionna, explains its design principles and features, as well as future extensions, such as integrated ray tracing and custom CUDA kernels. We believe that Sionna is a valuable tool for research on next-generation communication systems, such as 6G, and we welcome contributions from our community.


Deep Learning-Based Synchronization for Uplink NB-IoT

arXiv.org Artificial Intelligence

We propose a neural network (NN)-based algorithm for device detection and time of arrival (ToA) and carrier frequency offset (CFO) estimation for the narrowband physical random-access channel (NPRACH) of narrowband internet of things (NB-IoT). The introduced NN architecture leverages residual convolutional networks as well as knowledge of the preamble structure of the 5G New Radio (5G NR) specifications. Benchmarking on a 3rd Generation Partnership Project (3GPP) urban microcell (UMi) channel model with random drops of users against a state-of-the-art baseline shows that the proposed method enables up to 8 dB gains in false negative rate (FNR) as well as significant gains in false positive rate (FPR) and ToA and CFO estimation accuracy. Moreover, our simulations indicate that the proposed algorithm enables gains over a wide range of channel conditions, CFOs, and transmission probabilities. The introduced synchronization method operates at the base station (BS) and, therefore, introduces no additional complexity on the user devices. It could lead to an extension of battery lifetime by reducing the preamble length or the transmit power. Our code is available at: https://github.com/NVlabs/nprach_synch/.


Deep Learning-based Polar Code Design

arXiv.org Machine Learning

In this work, we introduce a deep learning-based polar code construction algorithm. The core idea is to represent the information/frozen bit indices of a polar code as a binary vector which can be interpreted as trainable weights of a neural network (NN). For this, we demonstrate how this binary vector can be relaxed to a soft-valued vector, facilitating the learning process through gradient descent and enabling an efficient code construction. We further show how different polar code design constraints (e.g., code rate) can be taken into account by means of careful binary-to-soft and soft-to-binary conversions, along with rate-adjustment after each learning iteration. Besides its conceptual simplicity, this approach benefits from having the "decoder-in-the-loop", i.e., the nature of the decoder is inherently taken into consideration while learning (designing) the polar code. We show results for belief propagation (BP) decoding over both AWGN and Rayleigh fading channels with considerable performance gains over state-of-the-art construction schemes.


Decoder-tailored Polar Code Design Using the Genetic Algorithm

arXiv.org Artificial Intelligence

We propose a new framework for constructing polar codes (i.e., selecting the frozen bit positions) for arbitrary channels, and tailored to a given decoding algorithm, rather than based on the (not necessarily optimal) assumption of successive cancellation (SC) decoding. The proposed framework is based on the Genetic Algorithm (GenAlg), where populations (i.e., collections) of information sets evolve successively via evolutionary transformations based on their individual error-rate performance. These populations converge towards an information set that fits both the decoding behavior and the defined channel. Using our proposed algorithm over the additive white Gaussian noise (AWGN) channel, we construct a polar code of length 2048 with code rate 0.5, without the CRC-aid, tailored to plain successive cancellation list (SCL) decoding, achieving the same error-rate performance as the CRC-aided SCL decoding, and leading to a coding gain of 1 dB at BER of $10^{-6}$. Further, a belief propagation (BP)-tailored construction approaches the SCL error-rate performance without any modifications in the decoding algorithm itself. The performance gains can be attributed to the significant reduction in the total number of low-weight codewords. To demonstrate the flexibility, coding gains for the Rayleigh channel are shown under SCL and BP decoding. Besides improvements in error-rate performance, we show that, when required, the GenAlg can be also set up to reduce the decoding complexity, e.g., the SCL list size or the number of BP iterations can be reduced, while maintaining the same error-rate performance.


Genetic Algorithm-based Polar Code Construction for the AWGN Channel

arXiv.org Artificial Intelligence

We propose a new polar code construction framework (i.e., selecting the frozen bit positions) for the additive white Gaussian noise (AWGN) channel, tailored to a given decoding algorithm, rather than based on the (not necessarily optimal) assumption of successive cancellation (SC) decoding. The proposed framework is based on the Genetic Algorithm (GenAlg), where populations (i.e., collections) of information sets evolve successively via evolutionary transformations based on their individual error-rate performance. These populations converge towards an information set that fits the decoding behavior. Using our proposed algorithm, we construct a polar code of length 2048 with code rate 0.5, without the CRC-aid, tailored to plain successive cancellation list (SCL) decoding, achieving the same error-rate performance as the CRC-aided SCL decoding, and leading to a coding gain of 1 dB at BER of $10^{-6}$. Further, a belief propagation (BP)-tailored polar code approaches the SCL error-rate performance without any modifications in the decoding algorithm itself.


Enabling FDD Massive MIMO through Deep Learning-based Channel Prediction

arXiv.org Machine Learning

A major obstacle for widespread deployment of frequency division duplex (FDD)-based Massive multiple-input multipleoutput (MIMO)communications is the large signaling overhead for reporting full downlink (DL) channel state information (CSI) back to the basestation (BS), in order to enable closed-loop precoding. We completely remove this overhead by a deep-learning based channel extrapolation (or "prediction") approach and demonstrate that a neural network (NN) at the BS can infer the DL CSI centered around a frequency f UL; nomore pilot/reporting overhead is needed than with a genuine time division duplex (TDD)-based system. The rationale is that scatterers and the large-scale propagation environment are sufficiently similar to allow a NN to learn about the physical connections and constraints between two neighboring frequency bands, and thus provide a well-operating system even when classic extrapolation methods, like the Wiener filter (used as a baseline for comparison throughout) fails. We study its performance for various state-of-the-art Massive MIMO channel models, and, even more so, evaluate the scheme using actual Massive MIMO channel measurements, rendering it to be practically feasible at negligible loss in spectral efficiency when compared to a genuine TDD-based system. I. INTRODUCTION With a significant increase in area throughput, Massive multiple-input multiple-output (MIMO) antenna communication has become an enabling technology for the upcoming fifth generation (5G) wireless mobile communication systems [1], [2], [3], [4]. However, Massive MIMO systems described in current research literature commonly exploit channel reciprocity and hence rely on time division duplex (TDD)-based approaches [1], i.e., uplink (UL) and downlink (DL) channels share the same frequency band in orthogonal time intervals. Achieving such reciprocity in practice requires accurate hardware with costly calibration circuitry. To mitigate this issue, various alternatives to a full Massive MIMO system have been proposed such as the grid of beams [5] and codebook Massive MIMO [6].


Deep Learning-Based Communication Over the Air

arXiv.org Machine Learning

End-to-end learning of communications systems is a fascinating novel concept that has so far only been validated by simulations for block-based transmissions. It allows learning of transmitter and receiver implementations as deep neural networks (NNs) that are optimized for an arbitrary differentiable end-to-end performance metric, e.g., block error rate (BLER). In this paper, we demonstrate that over-the-air transmissions are possible: We build, train, and run a complete communications system solely composed of NNs using unsynchronized off-the-shelf software-defined radios (SDRs) and open-source deep learning (DL) software libraries. We extend the existing ideas towards continuous data transmission which eases their current restriction to short block lengths but also entails the issue of receiver synchronization. We overcome this problem by introducing a frame synchronization module based on another NN. A comparison of the BLER performance of the "learned" system with that of a practical baseline shows competitive performance close to 1 dB, even without extensive hyperparameter tuning. We identify several practical challenges of training such a system over actual channels, in particular the missing channel gradient, and propose a two-step learning procedure based on the idea of transfer learning that circumvents this issue.