Goto

Collaborating Authors

 Camilli, Gregory


NLP Cluster Analysis of Common Core State Standards and NAEP Item Specifications

arXiv.org Artificial Intelligence

Camilli (2024) proposed a methodology using natural language processing (NLP) to map the relationship of a set of content standards to item specifications. This study provided evidence that NLP can be used to improve the mapping process. As part of this investigation, the nominal classifications of standards and items specifications were used to examine construct equivalence. In the current paper, we determine the strength of empirical support for the semantic distinctiveness of these classifications, which are known as "domains" for Common Core standards, and "strands" for National Assessment of Educational Progress (NAEP) item specifications. This is accomplished by separate k-means clustering for standards and specifications of their corresponding embedding vectors. We then briefly illustrate an application of these findings.


An NLP Crosswalk Between the Common Core State Standards and NAEP Item Specifications

arXiv.org Artificial Intelligence

Natural language processing (NLP) is rapidly developing for applications in educational assessment. In this paper, I describe an NLP-based procedure that can be used to support subject matter experts in establishing a crosswalk between item specifications and content standards. This paper extends recent work by proposing and demonstrating the use of multivariate similarity based on embedding vectors for sentences or texts. In particular, a hybrid regression procedure is demonstrated for establishing the match of each content standard to multiple item specifications. The procedure is used to evaluate the match of the Common Core State Standards (CCSS) for mathematics at grade 4 to the corresponding item specifications for the 2026 National Assessment of Educational Progress (NAEP).