Goto

Collaborating Authors

 Camgoz, Necati Cihan


2M-BELEBELE: Highly Multilingual Speech and American Sign Language Comprehension Dataset

arXiv.org Artificial Intelligence

We introduce the first highly multilingual speech and American Sign Language (ASL) comprehension dataset by extending BELEBELE. Our dataset covers 74 spoken languages at the intersection of BELEBELE and FLEURS, and one sign language (ASL). We evaluate 2M-BELEBELE dataset for both 5-shot and zero-shot settings and across languages, the speech comprehension accuracy is ~ 2-3% average lower compared to reading comprehension.


A Free Lunch with Influence Functions? Improving Neural Network Estimates with Concepts from Semiparametric Statistics

arXiv.org Machine Learning

Parameter estimation in empirical fields is usually undertaken using parametric models, and such models readily facilitate statistical inference. Unfortunately, they are unlikely to be sufficiently flexible to be able to adequately model real-world phenomena, and may yield biased estimates. Conversely, non-parametric approaches are flexible but do not readily facilitate statistical inference and may still exhibit residual bias. We explore the potential for Influence Functions (IFs) to (a) improve initial estimators without needing more data (b) increase model robustness and (c) facilitate statistical inference. We begin with a broad introduction to IFs, and propose a neural network method 'MultiNet', which seeks the diversity of an ensemble using a single architecture. We also introduce variants on the IF update step which we call 'MultiStep', and provide a comprehensive evaluation of different approaches. The improvements are found to be dataset dependent, indicating an interaction between the methods used and nature of the data generating process. Our experiments highlight the need for practitioners to check the consistency of their findings, potentially by undertaking multiple analyses with different combinations of estimators. We also show that it is possible to improve existing neural networks for `free', without needing more data, and without needing to retrain them.


Shadow-Mapping for Unsupervised Neural Causal Discovery

arXiv.org Machine Learning

An important goal across most scientific fields is the discovery of causal structures underling a set of observations. Unfortunately, causal discovery methods which are based on correlation or mutual information can often fail to identify causal links in systems which exhibit dynamic relationships. Such dynamic systems (including the famous coupled logistic map) exhibit `mirage' correlations which appear and disappear depending on the observation window. This means not only that correlation is not causation but, perhaps counter-intuitively, that causation may occur without correlation. In this paper we describe Neural Shadow-Mapping, a neural network based method which embeds high-dimensional video data into a low-dimensional shadow representation, for subsequent estimation of causal links. We demonstrate its performance at discovering causal links from video-representations of dynamic systems.


D'ya like DAGs? A Survey on Structure Learning and Causal Discovery

arXiv.org Machine Learning

It is important for a broad range of applications, including policy making [136], medical imaging [30], advertisement [22], the development of medical treatments [189], the evaluation of evidence within legal frameworks [183, 218], social science [82, 96, 246], biology [235], and many others. It is also a burgeoning topic in machine learning and artificial intelligence [17, 66, 76, 144, 210, 247, 255], where it has been argued that a consideration for causality is crucial for reasoning about the world. In order to discover causal relations, and thereby gain causal understanding, one may perform interventions and manipulations as part of a randomized experiment. These experiments may not only allow researchers or agents to identify causal relationships, but also to estimate the magnitude of these relationships. Unfortunately, in many cases, it may not be possible to undertake such experiments due to prohibitive cost, ethical concerns, or impracticality.


Targeted VAE: Structured Inference and Targeted Learning for Causal Parameter Estimation

arXiv.org Artificial Intelligence

Undertaking causal inference with observational data is extremely useful across a wide range of domains including the development of medical treatments, advertisements and marketing, and policy making. There are two main challenges associated with undertaking causal inference using observational data: treatment assignment heterogeneity (i.e., differences between the treated and untreated groups), and an absence of counterfactual data (i.e. not knowing what would have happened if an individual who did get treatment, were instead to have not been treated). We address these two challenges by combining structured inference and targeted learning. To our knowledge, Targeted Variational AutoEncoder (TVAE) is the first method to incorporate targeted learning into deep latent variable models. Results demonstrate competitive and state of the art performance.