Goto

Collaborating Authors

 Caliskan, Aylin


Intrinsic Bias is Predicted by Pretraining Data and Correlates with Downstream Performance in Vision-Language Encoders

arXiv.org Artificial Intelligence

While recent work has found that vision-language models trained under the Contrastive Language Image Pre-training (CLIP) framework contain intrinsic social biases, the extent to which different upstream pre-training features of the framework relate to these biases, and hence how intrinsic bias and downstream performance are connected has been unclear. In this work, we present the largest comprehensive analysis to-date of how the upstream pre-training factors and downstream performance of CLIP models relate to their intrinsic biases. Studying 131 unique CLIP models, trained on 26 datasets, using 55 architectures, and in a variety of sizes, we evaluate bias in each model using 26 well-established unimodal and cross-modal principled Embedding Association Tests. We find that the choice of pre-training dataset is the most significant upstream predictor of bias, whereas architectural variations have minimal impact. Additionally, datasets curated using sophisticated filtering techniques aimed at enhancing downstream model performance tend to be associated with higher levels of intrinsic bias. Finally, we observe that intrinsic bias is often significantly correlated with downstream performance ($0.3 \leq r \leq 0.8$), suggesting that models optimized for performance inadvertently learn to amplify representational biases. Comparisons between unimodal and cross-modal association tests reveal that social group bias depends heavily on the modality. Our findings imply that more sophisticated strategies are needed to address intrinsic model bias for vision-language models across the entire model development pipeline.


Breaking Bias, Building Bridges: Evaluation and Mitigation of Social Biases in LLMs via Contact Hypothesis

arXiv.org Artificial Intelligence

Large Language Models (LLMs) perpetuate social biases, reflecting prejudices in their training data and reinforcing societal stereotypes and inequalities. Our work explores the potential of the Contact Hypothesis, a concept from social psychology for debiasing LLMs. We simulate various forms of social contact through LLM prompting to measure their influence on the model's biases, mirroring how intergroup interactions can reduce prejudices in social contexts. We create a dataset of 108,000 prompts following a principled approach replicating social contact to measure biases in three LLMs (LLaMA 2, Tulu, and NousHermes) across 13 social bias dimensions. We propose a unique debiasing technique, Social Contact Debiasing (SCD), that instruction-tunes these models with unbiased responses to prompts. Our research demonstrates that LLM responses exhibit social biases when subject to contact probing, but more importantly, these biases can be significantly reduced by up to 40% in 1 epoch of instruction tuning LLaMA 2 following our SCD strategy. Our code and data are available at https://github.com/chahatraj/breakingbias.


BiasDora: Exploring Hidden Biased Associations in Vision-Language Models

arXiv.org Artificial Intelligence

Existing works examining Vision Language Models (VLMs) for social biases predominantly focus on a limited set of documented bias associations, such as gender:profession or race:crime. This narrow scope often overlooks a vast range of unexamined implicit associations, restricting the identification and, hence, mitigation of such biases. We address this gap by probing VLMs to (1) uncover hidden, implicit associations across 9 bias dimensions. We systematically explore diverse input and output modalities and (2) demonstrate how biased associations vary in their negativity, toxicity, and extremity. Our work (3) identifies subtle and extreme biases that are typically not recognized by existing methodologies. We make the Dataset of retrieved associations, (Dora), publicly available here https://github.com/chahatraj/BiasDora.


Pre-trained Speech Processing Models Contain Human-Like Biases that Propagate to Speech Emotion Recognition

arXiv.org Artificial Intelligence

Previous work has established that a person's demographics and speech style affect how well speech processing models perform for them. But where does this bias come from? In this work, we present the Speech Embedding Association Test (SpEAT), a method for detecting bias in one type of model used for many speech tasks: pre-trained models. The SpEAT is inspired by word embedding association tests in natural language processing, which quantify intrinsic bias in a model's representations of different concepts, such as race or valence (something's pleasantness or unpleasantness) and capture the extent to which a model trained on large-scale socio-cultural data has learned human-like biases. Using the SpEAT, we test for six types of bias in 16 English speech models (including 4 models also trained on multilingual data), which come from the wav2vec 2.0, HuBERT, WavLM, and Whisper model families. We find that 14 or more models reveal positive valence (pleasantness) associations with abled people over disabled people, with European-Americans over African-Americans, with females over males, with U.S. accented speakers over non-U.S. accented speakers, and with younger people over older people. Beyond establishing that pre-trained speech models contain these biases, we also show that they can have real world effects. We compare biases found in pre-trained models to biases in downstream models adapted to the task of Speech Emotion Recognition (SER) and find that in 66 of the 96 tests performed (69%), the group that is more associated with positive valence as indicated by the SpEAT also tends to be predicted as speaking with higher valence by the downstream model. Our work provides evidence that, like text and image-based models, pre-trained speech based-models frequently learn human-like biases. Our work also shows that bias found in pre-trained models can propagate to the downstream task of SER.


Is the U.S. Legal System Ready for AI's Challenges to Human Values?

arXiv.org Artificial Intelligence

Our interdisciplinary study investigates how effectively U.S. laws confront the challenges posed by Generative AI to human values. Through an analysis of diverse hypothetical scenarios crafted during an expert workshop, we have identified notable gaps and uncertainties within the existing legal framework regarding the protection of fundamental values, such as privacy, autonomy, dignity, diversity, equity, and physical/mental well-being. Constitutional and civil rights, it appears, may not provide sufficient protection against AI-generated discriminatory outputs. Furthermore, even if we exclude the liability shield provided by Section 230, proving causation for defamation and product liability claims is a challenging endeavor due to the intricate and opaque nature of AI systems. To address the unique and unforeseeable threats posed by Generative AI, we advocate for legal frameworks that evolve to recognize new threats and provide proactive, auditable guidelines to industry stakeholders. Addressing these issues requires deep interdisciplinary collaborations to identify harms, values, and mitigation strategies.


Evaluating Biased Attitude Associations of Language Models in an Intersectional Context

arXiv.org Artificial Intelligence

Language models are trained on large-scale corpora that embed implicit biases documented in psychology. Valence associations (pleasantness/unpleasantness) of social groups determine the biased attitudes towards groups and concepts in social cognition. Building on this established literature, we quantify how social groups are valenced in English language models using a sentence template that provides an intersectional context. We study biases related to age, education, gender, height, intelligence, literacy, race, religion, sex, sexual orientation, social class, and weight. We present a concept projection approach to capture the valence subspace through contextualized word embeddings of language models. Adapting the projection-based approach to embedding association tests that quantify bias, we find that language models exhibit the most biased attitudes against gender identity, social class, and sexual orientation signals in language. We find that the largest and better-performing model that we study is also more biased as it effectively captures bias embedded in sociocultural data. We validate the bias evaluation method by overperforming on an intrinsic valence evaluation task. The approach enables us to measure complex intersectional biases as they are known to manifest in the outputs and applications of language models that perpetuate historical biases. Moreover, our approach contributes to design justice as it studies the associations of groups underrepresented in language such as transgender and homosexual individuals.


Bias Against 93 Stigmatized Groups in Masked Language Models and Downstream Sentiment Classification Tasks

arXiv.org Artificial Intelligence

The rapid deployment of artificial intelligence (AI) models demands a thorough investigation of biases and risks inherent in these models to understand their impact on individuals and society. This study extends the focus of bias evaluation in extant work by examining bias against social stigmas on a large scale. It focuses on 93 stigmatized groups in the United States, including a wide range of conditions related to disease, disability, drug use, mental illness, religion, sexuality, socioeconomic status, and other relevant factors. We investigate bias against these groups in English pre-trained Masked Language Models (MLMs) and their downstream sentiment classification tasks. To evaluate the presence of bias against 93 stigmatized conditions, we identify 29 non-stigmatized conditions to conduct a comparative analysis. Building upon a psychology scale of social rejection, the Social Distance Scale, we prompt six MLMs: RoBERTa-base, RoBERTa-large, XLNet-large, BERTweet-base, BERTweet-large, and DistilBERT. We use human annotations to analyze the predicted words from these models, with which we measure the extent of bias against stigmatized groups. When prompts include stigmatized conditions, the probability of MLMs predicting negative words is approximately 20 percent higher than when prompts have non-stigmatized conditions. In the sentiment classification tasks, when sentences include stigmatized conditions related to diseases, disability, education, and mental illness, they are more likely to be classified as negative. We also observe a strong correlation between bias in MLMs and their downstream sentiment classifiers (r =0.79). The evidence indicates that MLMs and their downstream sentiment classification tasks exhibit biases against socially stigmatized groups.


Easily Accessible Text-to-Image Generation Amplifies Demographic Stereotypes at Large Scale

arXiv.org Artificial Intelligence

Machine learning models that convert user-written text descriptions into images are now widely available online and used by millions of users to generate millions of images a day. We investigate the potential for these models to amplify dangerous and complex stereotypes. We find a broad range of ordinary prompts produce stereotypes, including prompts simply mentioning traits, descriptors, occupations, or objects. For example, we find cases of prompting for basic traits or social roles resulting in images reinforcing whiteness as ideal, prompting for occupations resulting in amplification of racial and gender disparities, and prompting for objects resulting in reification of American norms. Stereotypes are present regardless of whether prompts explicitly mention identity and demographic language or avoid such language. Moreover, stereotypes persist despite mitigation strategies; neither user attempts to counter stereotypes by requesting images with specific counter-stereotypes nor institutional attempts to add system ``guardrails'' have prevented the perpetuation of stereotypes. Our analysis justifies concerns regarding the impacts of today's models, presenting striking exemplars, and connecting these findings with deep insights into harms drawn from social scientific and humanist disciplines. This work contributes to the effort to shed light on the uniquely complex biases in language-vision models and demonstrates the ways that the mass deployment of text-to-image generation models results in mass dissemination of stereotypes and resulting harms.


ChatGPT Perpetuates Gender Bias in Machine Translation and Ignores Non-Gendered Pronouns: Findings across Bengali and Five other Low-Resource Languages

arXiv.org Artificial Intelligence

In this multicultural age, language translation is one of the most performed tasks, and it is becoming increasingly AI-moderated and automated. As a novel AI system, ChatGPT claims to be proficient in such translation tasks and in this paper, we put that claim to the test. Specifically, we examine ChatGPT's accuracy in translating between English and languages that exclusively use gender-neutral pronouns. We center this study around Bengali, the 7$^{th}$ most spoken language globally, but also generalize our findings across five other languages: Farsi, Malay, Tagalog, Thai, and Turkish. We find that ChatGPT perpetuates gender defaults and stereotypes assigned to certain occupations (e.g. man = doctor, woman = nurse) or actions (e.g. woman = cook, man = go to work), as it converts gender-neutral pronouns in languages to `he' or `she'. We also observe ChatGPT completely failing to translate the English gender-neutral pronoun `they' into equivalent gender-neutral pronouns in other languages, as it produces translations that are incoherent and incorrect. While it does respect and provide appropriately gender-marked versions of Bengali words when prompted with gender information in English, ChatGPT appears to confer a higher respect to men than to women in the same occupation. We conclude that ChatGPT exhibits the same gender biases which have been demonstrated for tools like Google Translate or MS Translator, as we provide recommendations for a human centered approach for future designers of AIs that perform language translation to better accommodate such low-resource languages.


Contrastive Language-Vision AI Models Pretrained on Web-Scraped Multimodal Data Exhibit Sexual Objectification Bias

arXiv.org Artificial Intelligence

Nine language-vision AI models trained on web scrapes with the Contrastive Language-Image Pretraining (CLIP) objective are evaluated for evidence of a bias studied by psychologists: the sexual objectification of girls and women, which occurs when a person's human characteristics, such as emotions, are disregarded and the person is treated as a body. We replicate three experiments in psychology quantifying sexual objectification and show that the phenomena persist in AI. A first experiment uses standardized images of women from the Sexual OBjectification and EMotion Database, and finds that human characteristics are disassociated from images of objectified women: the model's recognition of emotional state is mediated by whether the subject is fully or partially clothed. Embedding association tests (EATs) return significant effect sizes for both anger (d >0.80) and sadness (d >0.50), associating images of fully clothed subjects with emotions. GRAD-CAM saliency maps highlight that CLIP gets distracted from emotional expressions in objectified images. A second experiment measures the effect in a representative application: an automatic image captioner (Antarctic Captions) includes words denoting emotion less than 50% as often for images of partially clothed women than for images of fully clothed women. A third experiment finds that images of female professionals (scientists, doctors, executives) are likely to be associated with sexual descriptions relative to images of male professionals. A fourth experiment shows that a prompt of "a [age] year old girl" generates sexualized images (as determined by an NSFW classifier) up to 73% of the time for VQGAN-CLIP and Stable Diffusion; the corresponding rate for boys never surpasses 9%. The evidence indicates that language-vision AI models trained on web scrapes learn biases of sexual objectification, which propagate to downstream applications.