Caldwell, Michael
A Preliminary Investigation into Predictive Models for Adverse Drug Events
Davis, Jesse (Katholieke Universiteit Leuven) | Costa, Vitor Santos (Universidade do Porto) | Peissig, Peggy (Marshfield Clinic) | Caldwell, Michael (Marshfield Clinic) | Page, David (University of Wisconsin - Madison)
Adverse drug events are a leading cause of danger and cost in health care. We could reduce both the danger and the cost if we had accurate models to predict, at prescription time for each drug, which patients are most at risk for known adverse reactions to that drug, such as myocardial infarction (MI, or "heart attack") if given a Cox2 inhibitor, angioedema if given an ACE inhibitor, or bleeding if given an anticoagulant such as Warfarin. We address this task for the specific case of Cox2 inhibitors, a type of non-steroidal anti-inflammatory drug (NSAID) or pain reliever that is easier on the gastrointestinal system than most NSAIDS. Because of the MI adverse drug reaction, some but not all very effective Cox2 inhibitors were removed from the market. Specifically, we use machine learning to predict which patients on a Cox2 inhibitor would suffer an MI. An important issue for machine learning is that we do not know which of these patients might have suffered an MI even without the drug. To begin to make some headway on this important problem, we compare our predictive model for MI for patients on Cox2 inhibitors against a more general model for predicting MI among a broader population not on Cox2 inhibitors.
Identifying Adverse Drug Events by Relational Learning
Page, David (University of Wisconsin-Madison) | Costa, Vitor Santos (CRACS-INESC TEC and FCUP) | Natarajan, Sriraam (Wake Forest University) | Barnard, Aubrey (University of Wisconsin-Madison) | Peissig, Peggy (Marshfield Clinic Research Foundation) | Caldwell, Michael (Marshfield Clinic)
The pharmaceutical industry, consumer protection groups, users of medications and government oversight agencies are all strongly interested in identifying adverse reactions to drugs. While a clinical trial of a drug may use only a thousand patients, once a drug is released on the market it may be taken by millions of patients. As a result, in many cases adverse drug events (ADEs) are observed in the broader population that were not identified during clinical trials. Therefore, there is a need for continued, postmarketing surveillance of drugs to identify previously-unanticipated ADEs. This paper casts this problem as a reverse machine learning task, related to relational subgroup discovery and provides an initial evaluation of this approach based on experiments with an actual EMR/EHR and known adverse drug events.
Demand-Driven Clustering in Relational Domains for Predicting Adverse Drug Events
Davis, Jesse, Costa, Vitor Santos, Peissig, Peggy, Caldwell, Michael, Berg, Elizabeth, Page, David
Learning from electronic medical records (EMR) is challenging due to their relational nature and the uncertain dependence between a patient's past and future health status. Statistical relational learning is a natural fit for analyzing EMRs but is less adept at handling their inherent latent structure, such as connections between related medications or diseases. One way to capture the latent structure is via a relational clustering of objects. We propose a novel approach that, instead of pre-clustering the objects, performs a demand-driven clustering during learning. We evaluate our algorithm on three real-world tasks where the goal is to use EMRs to predict whether a patient will have an adverse reaction to a medication. We find that our approach is more accurate than performing no clustering, pre-clustering, and using expert-constructed medical heterarchies.