Goto

Collaborating Authors

 Calanzone, Diego


Mol-MoE: Training Preference-Guided Routers for Molecule Generation

arXiv.org Artificial Intelligence

Recent advances in language models have enabled framing molecule generation as sequence modeling. However, existing approaches often rely on single-objective reinforcement learning, limiting their applicability to real-world drug design, where multiple competing properties must be optimized. Traditional multi-objective reinforcement learning (MORL) methods require costly retraining for each new objective combination, making rapid exploration of trade-offs impractical. To overcome these limitations, we introduce Mol-MoE, a mixture-of-experts (MoE) architecture that enables efficient test-time steering of molecule generation without retraining. Central to our approach is a preference-based router training objective that incentivizes the router to combine experts in a way that aligns with user-specified trade-offs. This provides improved flexibility in exploring the chemical property space at test time, facilitating rapid trade-off exploration. Benchmarking against state-of-the-art methods, we show that Mol-MoE achieves superior sample quality and steerability.


Logically Consistent Language Models via Neuro-Symbolic Integration

arXiv.org Artificial Intelligence

Large language models (LLMs) are a promising venue for natural language understanding and generation. However, current LLMs are far from reliable: they are prone to generating non-factual information and, more crucially, to contradicting themselves when prompted to reason about relations between entities of the world. These problems are currently addressed with large scale fine-tuning or by delegating reasoning to external tools. In this work, we strive for a middle ground and introduce a loss based on neuro-symbolic reasoning that teaches an LLM to be logically consistent with an external set of facts and rules and improves self-consistency even when the LLM is fine-tuned on a limited set of facts. Our approach also allows to easily combine multiple logical constraints at once in a principled way, delivering LLMs that are more consistent w.r.t. all constraints and improve over several baselines w.r.t. a given constraint. Moreover, our method allows LLMs to extrapolate to unseen but semantically similar factual knowledge, represented in unseen datasets, more systematically.


Towards Logically Consistent Language Models via Probabilistic Reasoning

arXiv.org Artificial Intelligence

Large language models (LLMs) are a promising venue for natural language understanding and generation tasks. However, current LLMs are far from reliable: they are prone to generate non-factual information and, more crucially, to contradict themselves when prompted to reason about beliefs of the world. These problems are currently addressed with large scale fine-tuning or by delegating consistent reasoning to external tools. In this work, we strive for a middle ground and introduce a training objective based on principled probabilistic reasoning that teaches a LLM to be consistent with external knowledge in the form of a set of facts and rules. Fine-tuning with our loss on a limited set of facts enables our LLMs to be more logically consistent than previous baselines and allows them to extrapolate to unseen but semantically similar factual knowledge more systematically.