Cakir, Fatih
Hashing with Binary Matrix Pursuit
Cakir, Fatih, He, Kun, Sclaroff, Stan
We propose theoretical and empirical improvements for two-stage hashing methods. We first provide a theoretical analysis on the quality of the binary codes and show that, under mild assumptions, a residual learning scheme can construct binary codes that fit any neighborhood structure with arbitrary accuracy. Secondly, we show that with high-capacity hash functions such as CNNs, binary code inference can be greatly simplified for many standard neighborhood definitions, yielding smaller optimization problems and more robust codes. Incorporating our findings, we propose a novel two-stage hashing method that significantly outperforms previous hashing studies on widely used image retrieval benchmarks.
Hashing as Tie-Aware Learning to Rank
He, Kun, Cakir, Fatih, Bargal, Sarah Adel, Sclaroff, Stan
Hashing, or learning binary embeddings of data, is frequently used in nearest neighbor retrieval. In this paper, we develop learning to rank formulations for hashing, aimed at directly optimizing ranking-based evaluation metrics such as Average Precision (AP) and Normalized Discounted Cumulative Gain (NDCG). We first observe that the integer-valued Hamming distance often leads to tied rankings, and propose to use tie-aware versions of AP and NDCG to evaluate hashing for retrieval. Then, to optimize tie-aware ranking metrics, we derive their continuous relaxations, and perform gradient-based optimization with deep neural networks. Our results establish the new state-of-the-art for image retrieval by Hamming ranking in common benchmarks.