Cai, Yi
RMG: Real-Time Expressive Motion Generation with Self-collision Avoidance for 6-DOF Companion Robotic Arms
Li, Jiansheng, Song, Haotian, Zhou, Jinni, Nie, Qiang, Cai, Yi
The six-degree-of-freedom (6-DOF) robotic arm has gained widespread application in human-coexisting environments. While previous research has predominantly focused on functional motion generation, the critical aspect of expressive motion in human-robot interaction remains largely unexplored. This paper presents a novel real-time motion generation planner that enhances interactivity by creating expressive robotic motions between arbitrary start and end states within predefined time constraints. Our approach involves three key contributions: first, we develop a mapping algorithm to construct an expressive motion dataset derived from human dance movements; second, we train motion generation models in both Cartesian and joint spaces using this dataset; third, we introduce an optimization algorithm that guarantees smooth, collision-free motion while maintaining the intended expressive style. Experimental results demonstrate the effectiveness of our method, which can generate expressive and generalized motions in under 0.5 seconds while satisfying all specified constraints.
Classic4Children: Adapting Chinese Literary Classics for Children with Large Language Model
Chen, Jiali, Hei, Xusen, Xue, Yuqi, Wu, Zihan, Xie, Jiayuan, Cai, Yi
Chinese literary classics hold significant cultural and educational value, offering deep insights into morality, history, and human nature. These works often include classical Chinese and complex narratives, making them difficult for children to read. To bridge this gap, we introduce a child-friendly literary adaptation (CLA) task to adapt the Chinese literary classic into engaging and accessible text for children. However, recent large language models (LLMs) overlook children's reading preferences (\ie, vivid character portrayals, concise narrative structures, and appropriate readability), which poses challenges in CLA. In this paper, we propose a method called InstructChild, which augments the LLM with these preferences for adaptation. Specifically, we first obtain the characters' personalities and narrative structure as additional information for fine-grained instruction tuning. Then, we devise a readability metric as the reward to align the LLM with the children's reading level. Finally, a lookahead decoding strategy is applied to improve the readability of the generated text during inference. To support the evaluation of CLA task, we construct the Classic4Children dataset, which comprises both the original and child-friendly versions of the Four Great Classical Novels of Chinese literature. Experimental results show that our InstructChild significantly improves automatic and human evaluation performance.
Learning to Correction: Explainable Feedback Generation for Visual Commonsense Reasoning Distractor
Chen, Jiali, Hei, Xusen, Xue, Yuqi, Wei, Yuancheng, Xie, Jiayuan, Cai, Yi, Li, Qing
Large multimodal models (LMMs) have shown remarkable performance in the visual commonsense reasoning (VCR) task, which aims to answer a multiple-choice question based on visual commonsense within an image. However, the ability of LMMs to correct potential visual commonsense errors in the distractor upon their occurrence is yet under-explored. Drawing inspiration from how a human teacher crafts challenging distractors to test students' comprehension of the concepts or skills and assists them in identifying and correcting errors toward the answer, we are the pioneering research for LMMs to simulate this error correction process. To this end, we employ GPT-4 as a ``teacher'' to collect the explainable feedback dataset VCR-DF for error correction, which serves as a benchmark to evaluate the ability of LMMs to identify misconceptions and clarify reasons behind the error in VCR distractors toward final answers. In addition, we propose an LMM-based Pedagogical Expert Instructed Feedback Generation (PEIFG) model to incorporate the learnable expert prompts and multimodal instruction as guidance for feedback generation. Experimental results show that our PEIFG significantly outperforms existing LMMs. We believe that our benchmark provides a new direction for evaluating the capabilities of LMMs.
Transparent Neighborhood Approximation for Text Classifier Explanation
Cai, Yi, Zimek, Arthur, Ntoutsi, Eirini, Wunder, Gerhard
Recent literature highlights the critical role of neighborhood construction in deriving model-agnostic explanations, with a growing trend toward deploying generative models to improve synthetic instance quality, especially for explaining text classifiers. These approaches overcome the challenges in neighborhood construction posed by the unstructured nature of texts, thereby improving the quality of explanations. However, the deployed generators are usually implemented via neural networks and lack inherent explainability, sparking arguments over the transparency of the explanation process itself. To address this limitation while preserving neighborhood quality, this paper introduces a probability-based editing method as an alternative to black-box text generators. This approach generates neighboring texts by implementing manipulations based on in-text contexts. Substituting the generator-based construction process with recursive probability-based editing, the resultant explanation method, XPROB (explainer with probability-based editing), exhibits competitive performance according to the evaluation conducted on two real-world datasets. Additionally, XPROB's fully transparent and more controllable construction process leads to superior stability compared to the generator-based explainers.
Few-Shot Joint Multimodal Entity-Relation Extraction via Knowledge-Enhanced Cross-modal Prompt Model
Yuan, Li, Cai, Yi, Huang, Junsheng
Joint Multimodal Entity-Relation Extraction (JMERE) is a challenging task that aims to extract entities and their relations from text-image pairs in social media posts. Existing methods for JMERE require large amounts of labeled data. However, gathering and annotating fine-grained multimodal data for JMERE poses significant challenges. Initially, we construct diverse and comprehensive multimodal few-shot datasets fitted to the original data distribution. To address the insufficient information in the few-shot setting, we introduce the \textbf{K}nowledge-\textbf{E}nhanced \textbf{C}ross-modal \textbf{P}rompt \textbf{M}odel (KECPM) for JMERE. This method can effectively address the problem of insufficient information in the few-shot setting by guiding a large language model to generate supplementary background knowledge. Our proposed method comprises two stages: (1) a knowledge ingestion stage that dynamically formulates prompts based on semantic similarity guide ChatGPT generating relevant knowledge and employs self-reflection to refine the knowledge; (2) a knowledge-enhanced language model stage that merges the auxiliary knowledge with the original input and utilizes a transformer-based model to align with JMERE's required output format. We extensively evaluate our approach on a few-shot dataset derived from the JMERE dataset, demonstrating its superiority over strong baselines in terms of both micro and macro F$_1$ scores. Additionally, we present qualitative analyses and case studies to elucidate the effectiveness of our model.
Is Your AI-Generated Code Really Safe? Evaluating Large Language Models on Secure Code Generation with CodeSecEval
Wang, Jiexin, Luo, Xitong, Cao, Liuwen, He, Hongkui, Huang, Hailin, Xie, Jiayuan, Jatowt, Adam, Cai, Yi
Large language models (LLMs) have brought significant advancements to code generation and code repair, benefiting both novice and experienced developers. However, their training using unsanitized data from open-source repositories, like GitHub, raises the risk of inadvertently propagating security vulnerabilities. Despite numerous studies investigating the safety of code LLMs, there remains a gap in comprehensively addressing their security features. In this work, we aim to present a comprehensive study aimed at precisely evaluating and enhancing the security aspects of code LLMs. To support our research, we introduce CodeSecEval, a meticulously curated dataset designed to address 44 critical vulnerability types with 180 distinct samples. CodeSecEval serves as the foundation for the automatic evaluation of code models in two crucial tasks: code generation and code repair, with a strong emphasis on security. Our experimental results reveal that current models frequently overlook security issues during both code generation and repair processes, resulting in the creation of vulnerable code. In response, we propose different strategies that leverage vulnerability-aware information and insecure code explanations to mitigate these security vulnerabilities. Furthermore, our findings highlight that certain vulnerability types particularly challenge model performance, influencing their effectiveness in real-world applications. Based on these findings, we believe our study will have a positive impact on the software engineering community, inspiring the development of improved methods for training and utilizing LLMs, thereby leading to safer and more trustworthy model deployment.
Towards Effective Time-Aware Language Representation: Exploring Enhanced Temporal Understanding in Language Models
Wang, Jiexin, Jatowt, Adam, Cai, Yi
In the evolving field of Natural Language Processing, understanding the temporal context of text is increasingly crucial. This study investigates methods to incorporate temporal information during pre-training, aiming to achieve effective time-aware language representation for improved performance on time-related tasks. In contrast to common pre-trained models like BERT, which rely on synchronic document collections such as BookCorpus and Wikipedia, our research introduces BiTimeBERT 2.0, a novel language model pre-trained on a temporal news article collection. BiTimeBERT 2.0 utilizes this temporal news collection, focusing on three innovative pre-training objectives: Time-Aware Masked Language Modeling (TAMLM), Document Dating (DD), and Time-Sensitive Entity Replacement (TSER). Each objective targets a unique aspect of temporal information. TAMLM is designed to enhance the understanding of temporal contexts and relations, DD integrates document timestamps as chronological markers, and TSER focuses on the temporal dynamics of "Person" entities, recognizing their inherent temporal significance. The experimental results consistently demonstrate that BiTimeBERT 2.0 outperforms models like BERT and other existing pre-trained models, achieving substantial gains across a variety of downstream NLP tasks and applications where time plays a pivotal role.
A Logical Pattern Memory Pre-trained Model for Entailment Tree Generation
Yuan, Li, Cai, Yi, Ren, Haopeng, Wang, Jiexin
Generating coherent and credible explanations remains a significant challenge in the field of AI. In recent years, researchers have delved into the utilization of entailment trees to depict explanations, which exhibits a reasoning process of how a hypothesis is deduced from the supporting facts. However, existing models often overlook the importance of generating intermediate conclusions with logical consistency from the given facts, leading to inaccurate conclusions and undermining the overall credibility of entailment trees. To address this limitation, we propose the logical pattern memory pre-trained model (LMPM). LMPM incorporates an external memory structure to learn and store the latent representations of logical patterns, which aids in generating logically consistent conclusions. Furthermore, to mitigate the influence of logically irrelevant domain knowledge in the Wikipedia-based data, we introduce an entity abstraction approach to construct the dataset for pre-training LMPM. The experimental results highlight the effectiveness of our approach in improving the quality of entailment tree generation. By leveraging logical entailment patterns, our model produces more coherent and reasonable conclusions that closely align with the underlying premises.
An Adversarial Non-Autoregressive Model for Text Generation with Incomplete Information
Non-autoregressive models have been widely studied in the Complete Information Scenario (CIS), in which the input has complete information of corresponding output. However, their explorations in the Incomplete Information Scenario (IIS) are extremely limited. Our analyses reveal that the IIS's incomplete input information will augment the inherent limitations of existing non-autoregressive models trained under Maximum Likelihood Estimation. In this paper, we propose for the IIS an Adversarial Non-autoregressive Transformer (ANT) which has two features: 1) Position-Aware Self-Modulation to provide more reasonable hidden representations, and 2) Dependency Feed Forward Network to strengthen its capacity in dependency modeling. We compare ANT with other mainstream models in the IIS and demonstrate that ANT can achieve comparable performance with much fewer decoding iterations. Furthermore, we show its great potential in various applications like latent interpolation and semi-supervised learning.
Enhancing Large Language Models for Secure Code Generation: A Dataset-driven Study on Vulnerability Mitigation
Wang, Jiexin, Cao, Liuwen, Luo, Xitong, Zhou, Zhiping, Xie, Jiayuan, Jatowt, Adam, Cai, Yi
Large language models (LLMs) have brought significant advancements to code generation, benefiting both novice and experienced developers. However, their training using unsanitized data from open-source repositories, like GitHub, introduces the risk of inadvertently propagating security vulnerabilities. To effectively mitigate this concern, this paper presents a comprehensive study focused on evaluating and enhancing code LLMs from a software security perspective. We introduce SecuCoGen\footnote{SecuCoGen has been uploaded as supplemental material and will be made publicly available after publication.}, a meticulously curated dataset targeting 21 critical vulnerability types. SecuCoGen comprises 180 samples and serves as the foundation for conducting experiments on three crucial code-related tasks: code generation, code repair and vulnerability classification, with a strong emphasis on security. Our experimental results reveal that existing models often overlook security concerns during code generation, leading to the generation of vulnerable code. To address this, we propose effective approaches to mitigate the security vulnerabilities and enhance the overall robustness of code generated by LLMs. Moreover, our study identifies weaknesses in existing models' ability to repair vulnerable code, even when provided with vulnerability information. Additionally, certain vulnerability types pose challenges for the models, hindering their performance in vulnerability classification. Based on these findings, we believe our study will have a positive impact on the software engineering community, inspiring the development of improved methods for training and utilizing LLMs, thereby leading to safer and more trustworthy model deployment.