Cai, Shaowei
Local Search for Integer Quadratic Programming
He, Xiang, Lin, Peng, Cai, Shaowei
Integer Quadratic Programming (IQP) is an important problem in operations research. Local search is a powerful method for solving hard problems, but the research on local search algorithms for IQP solving is still on its early stage. This paper develops an efficient local search solver for solving general IQP, called LS-IQCQP. We propose four new local search operators for IQP that can handle quadratic terms in the objective function, constraints or both. Furthermore, a two-mode local search algorithm is introduced, utilizing newly designed scoring functions to enhance the search process. Experiments are conducted on standard IQP benchmarks QPLIB and MINLPLIB, comparing LS-IQCQP with several state-of-the-art IQP solvers. Experimental results demonstrate that LS-IQCQP is competitive with the most powerful commercial solver Gurobi and outperforms other state-of-the-art solvers. Moreover, LS-IQCQP has established 6 new records for QPLIB and MINLPLIB open instances.
Better Understandings and Configurations in MaxSAT Local Search Solvers via Anytime Performance Analysis
Ye, Furong, Luo, Chuan, Cai, Shaowei
Though numerous solvers have been proposed for the MaxSAT problem, and the benchmark environment such as MaxSAT Evaluations provides a platform for the comparison of the state-of-the-art solvers, existing assessments were usually evaluated based on the quality, e.g., fitness, of the best-found solutions obtained within a given running time budget. However, concerning solely the final obtained solutions regarding specific time budgets may restrict us from comprehending the behavior of the solvers along the convergence process. This paper demonstrates that Empirical Cumulative Distribution Functions can be used to compare MaxSAT local search solvers' anytime performance across multiple problem instances and various time budgets. The assessment reveals distinctions in solvers' performance and displays that the (dis)advantages of solvers adjust along different running times. This work also exhibits that the quantitative and high variance assessment of anytime performance can guide machines, i.e., automatic configurators, to search for better parameter settings. Our experimental results show that the hyperparameter optimization tool, i.e., SMAC, generally achieves better parameter settings of local search when using the anytime performance as the cost function, compared to using the fitness of the best-found solutions.
AutoSAT: Automatically Optimize SAT Solvers via Large Language Models
Sun, Yiwen, Zhang, Xianyin, Huang, Shiyu, Cai, Shaowei, Zhang, Bing-Zhen, Wei, Ke
Heuristics are crucial in SAT solvers, while no heuristic rules are suitable for all problem instances. Therefore, it typically requires to refine specific solvers for specific problem instances. In this context, we present AutoSAT, a novel framework for automatically optimizing heuristics in SAT solvers. AutoSAT is based on Large Large Models (LLMs) which is able to autonomously generate code, conduct evaluation, then utilize the feedback to further optimize heuristics, thereby reducing human intervention and enhancing solver capabilities. AutoSAT operates on a plug-and-play basis, eliminating the need for extensive preliminary setup and model training, and fosters a Chain of Thought collaborative process with fault-tolerance, ensuring robust heuristic optimization. Extensive experiments on a Conflict-Driven Clause Learning (CDCL) solver demonstrates the overall superior performance of AutoSAT, especially in solving some specific SAT problem instances.
New Characterizations and Efficient Local Search for General Integer Linear Programming
Lin, Peng, Cai, Shaowei, Zou, Mengchuan, Lin, Jinkun
Integer linear programming (ILP) models a wide range of practical combinatorial optimization problems and has significant impacts in industry and management sectors. This work proposes new characterizations of ILP with the concept of boundary solutions. Motivated by the new characterizations, we develop an efficient local search solver, which is the first local search solver for general ILP validated on a large heterogeneous problem dataset. We propose a new local search framework that switches between three modes, namely Search, Improve, and Restore modes. We design tailored operators adapted to different modes, thus improving the quality of the current solution according to different situations. For the Search and Restore modes, we propose an operator named tight move, which adaptively modifies variables' values, trying to make some constraint tight. For the Improve mode, an efficient operator lift move is proposed to improve the quality of the objective function while maintaining feasibility. Putting these together, we develop a local search solver for integer linear programming called Local-ILP. Experiments conducted on the MIPLIB dataset show the effectiveness of our solver in solving large-scale hard integer linear programming problems within a reasonably short time. Local-ILP is competitive and complementary to the state-of-the-art commercial solver Gurobi and significantly outperforms the state-of-the-art non-commercial solver SCIP. Moreover, our solver establishes new records for 6 MIPLIB open instances. The theoretical analysis of our algorithm is also presented, which shows our algorithm could avoid visiting unnecessary regions and also maintain good connectivity of targeted solutions.
LANDMARK: Language-guided Representation Enhancement Framework for Scene Graph Generation
Chang, Xiaoguang, Wang, Teng, Cai, Shaowei, Sun, Changyin
Scene graph generation (SGG) is a sophisticated task that suffers from both complex visual features and dataset long-tail problem. Recently, various unbiased strategies have been proposed by designing novel loss functions and data balancing strategies. Unfortunately, these unbiased methods fail to emphasize language priors in feature refinement perspective. Inspired by the fact that predicates are highly correlated with semantics hidden in subject-object pair and global context, we propose LANDMARK (LANguage-guiDed representationenhanceMent frAmewoRK) that learns predicate-relevant representations from language-vision interactive patterns, global language context and pair-predicate correlation. Specifically, we first project object labels to three distinctive semantic embeddings for different representation learning. Then, Language Attention Module (LAM) and Experience Estimation Module (EEM) process subject-object word embeddings to attention vector and predicate distribution, respectively. Language Context Module (LCM) encodes global context from each word embed-ding, which avoids isolated learning from local information. Finally, modules outputs are used to update visual representations and SGG model's prediction. All language representations are purely generated from object categories so that no extra knowledge is needed. This framework is model-agnostic and consistently improves performance on existing SGG models. Besides, representation-level unbiased strategies endow LANDMARK the advantage of compatibility with other methods. Code is available at https://github.com/rafa-cxg/PySGG-cxg.
Incremental Satisfiability Modulo Theory for Verification of Deep Neural Networks
Yang, Pengfei, Chi, Zhiming, Liu, Zongxin, Zhao, Mengyu, Huang, Cheng-Chao, Cai, Shaowei, Zhang, Lijun
Constraint solving is an elementary way for verification of deep neural networks (DNN). In the domain of AI safety, a DNN might be modified in its structure and parameters for its repair or attack. For such situations, we propose the incremental DNN verification problem, which asks whether a safety property still holds after the DNN is modified. To solve the problem, we present an incremental satisfiability modulo theory (SMT) algorithm based on the Reluplex framework. We simulate the most important features of the configurations that infers the verification result of the searching branches in the old solving procedure (with respect to the original network), and heuristically check whether the proofs are still valid for the modified DNN. We implement our algorithm as an incremental solver called DeepInc, and exerimental results show that DeepInc is more efficient in most cases. For the cases that the property holds both before and after modification, the acceleration can be faster by several orders of magnitude, showing that DeepInc is outstanding in incrementally searching for counterexamples. Moreover, based on the framework, we propose the multi-objective DNN repair problem and give an algorithm based on our incremental SMT solving algorithm. Our repair method preserves more potential safety properties on the repaired DNNs compared with state-of-the-art.
DeepSAT: An EDA-Driven Learning Framework for SAT
Li, Min, Shi, Zhengyuan, Lai, Qiuxia, Khan, Sadaf, Cai, Shaowei, Xu, Qiang
We present DeepSAT, a novel end-to-end learning framework for the Boolean satisfiability (SAT) problem. Unlike existing solutions trained on random SAT instances with relatively weak supervision, we propose applying the knowledge of the well-developed electronic design automation (EDA) field for SAT solving. Specifically, we first resort to logic synthesis algorithms to pre-process SAT instances into optimized and-inverter graphs (AIGs). By doing so, the distribution diversity among various SAT instances can be dramatically reduced, which facilitates improving the generalization capability of the learned model. Next, we regard the distribution of SAT solutions being a product of conditional Bernoulli distributions. Based on this observation, we approximate the SAT solving procedure with a conditional generative model, leveraging a novel directed acyclic graph neural network (DAGNN) with two polarity prototypes for conditional SAT modeling. To effectively train the generative model, with the help of logic simulation tools, we obtain the probabilities of nodes in the AIG being logic `1' as rich supervision. We conduct comprehensive experiments on various SAT problems. Our results show that, DeepSAT achieves significant accuracy improvements over state-of-the-art learning-based SAT solutions, especially when generalized to SAT instances that are relatively large or with diverse distributions.
Better Decision Heuristics in CDCL through Local Search and Target Phases
Cai, Shaowei, Zhang, Xindi, Fleury, Mathias, Biere, Armin
On practical applications, state-of-the-art SAT solvers dominantly use the conflict-driven clause learning (CDCL) paradigm. An alternative for satisfiable instances is local search solvers, which is more successful on random and hard combinatorial instances. Although there have been attempts to combine these methods in one framework, a tight integration which improves the state of the art on a broad set of application instances has been missing. We present a combination of techniques that achieves such an improvement. Our first contribution is to maximize in a local search fashion the assignment trail in CDCL, by sticking to and extending promising assignments via a technique called target phases. Second, we relax the CDCL framework by again extending promising branches to complete assignments while ignoring conflicts. These assignments are then used as starting point of local search which tries to find improved assignments with fewer unsatisfied clauses. Third, these improved assignments are imported back to the CDCL loop where they are used to determine the value assigned to decision variables. Finally, the conflict frequency of variables in local search can be exploited during variable selection in branching heuristics of CDCL. We implemented these techniques to improve three representative CDCL solvers (Glucose, MapleLcm DistChronoBT, and Kissat). Experiments on benchmarks from the main tracks of the last three SAT Competitions from 2019 to 2021 and an additional benchmark set from spectrum allocation show that the techniques bring significant improvements, particularly and not surprisingly, on satisfiable real-world application instances. We claim that these techniques were essential to the large increase in performance witnessed in the SAT Competition 2020 where Kissat and Relaxed LcmdCbDl NewTech were leading the field followed by CryptoMiniSAT-Ccnr, which also incorporated similar ideas.
Improving Simulated Annealing for Clique Partitioning Problems
Gao, Jian, Lv, Yiqi, Liu, Minghao, Cai, Shaowei, Ma, Feifei
The Clique Partitioning Problem (CPP) is essential in graph theory with a number of important applications. Due to its NP-hardness, efficient algorithms for solving this problem are very crucial for practical purposes, and simulated annealing is proved to be effective in state-of-the-art CPP algorithms. However, to make simulated annealing more efficient to solve large-scale CPPs, in this paper, we propose a new iterated simulated annealing algorithm. Several methods are proposed in our algorithm to improve simulated annealing. First, a new configuration checking strategy based on timestamp is presented and incorporated into simulated annealing to avoid search cycles. Afterwards, to enhance the local search ability of simulated annealing and speed up convergence, we combine our simulated annealing with a descent search method to solve the CPP. This method further improves solutions found by simulated annealing, and thus compensates for the local search effect. To further accelerate the convergence speed, we introduce a shrinking factor to decline initial temperature and then propose an iterated local search algorithm based on simulated annealing. Additionally, a restart strategy is adopted when the search procedure converges. Extensive experiments on benchmark instances of the CPP were carried out, and the results suggest that the proposed simulated annealing algorithm outperforms all the existing heuristic algorithms, including five state-of-the-art algorithms. Thus the best-known solutions for 34 instances out of 94 are updated. We also conduct comparative analyses of the proposed strategies and show their effectiveness.
Can Graph Neural Networks Learn to Solve MaxSAT Problem?
Liu, Minghao, Jia, Fuqi, Huang, Pei, Zhang, Fan, Sun, Yuchen, Cai, Shaowei, Ma, Feifei, Zhang, Jian
With the rapid development of deep learning techniques, various recent work has tried to apply graph neural networks (GNNs) to solve NP-hard problems such as Boolean Satisfiability (SAT), which shows the potential in bridging the gap between machine learning and symbolic reasoning. However, the quality of solutions predicted by GNNs has not been well investigated in the literature. In this paper, we study the capability of GNNs in learning to solve Maximum Satisfiability (MaxSAT) problem, both from theoretical and practical perspectives. We build two kinds of GNN models to learn the solution of MaxSAT instances from benchmarks, and show that GNNs have attractive potential to solve MaxSAT problem through experimental evaluation. We also present a theoretical explanation of the effect that GNNs can learn to solve MaxSAT problem to some extent for the first time, based on the algorithmic alignment theory.