Goto

Collaborating Authors

 Cai, Peng


Optimizing AUV speed dynamics with a data-driven Koopman operator approach

arXiv.org Artificial Intelligence

Autonomous Underwater Vehicles (AUVs) play an essential role in modern ocean exploration, and their speed control systems are fundamental to their efficient operation. Like many other robotic systems, AUVs exhibit multivariable nonlinear dynamics and face various constraints, including state limitations, input constraints, and constraints on the increment input, making controller design challenging and requiring significant effort and time. This paper addresses these challenges by employing a data-driven Koopman operator theory combined with Model Predictive Control (MPC), which takes into account the aforementioned constraints. The proposed approach not only ensures the performance of the AUV under state and input limitations but also considers the variation in incremental input to prevent rapid and potentially damaging changes to the vehicle's operation. Additionally, we develop a platform based on ROS2 and Gazebo to validate the effectiveness of the proposed algorithms, providing new control strategies for underwater vehicles against the complex and dynamic nature of underwater environments.


Towards Automated Cross-domain Exploratory Data Analysis through Large Language Models

arXiv.org Artificial Intelligence

Exploratory data analysis (EDA), coupled with SQL, is essential for data analysts involved in data exploration and analysis. However, data analysts often encounter two primary challenges: (1) the need to craft SQL queries skillfully, and (2) the requirement to generate suitable visualization types that enhance the interpretation of query results. Due to its significance, substantial research efforts have been made to explore different approaches to address these challenges, including leveraging large language models (LLMs). However, existing methods fail to meet real-world data exploration requirements primarily due to (1) complex database schema; (2) unclear user intent; (3) limited cross-domain generalization capability; and (4) insufficient end-to-end text-to-visualization capability. This paper presents TiInsight, an automated SQL-based cross-domain exploratory data analysis system. First, we propose hierarchical data context (i.e., HDC), which leverages LLMs to summarize the contexts related to the database schema, which is crucial for open-world EDA systems to generalize across data domains. Second, the EDA system is divided into four components (i.e., stages): HDC generation, question clarification and decomposition, text-to-SQL generation (i.e., TiSQL), and data visualization (i.e., TiChart). Finally, we implemented an end-to-end EDA system with a user-friendly GUI interface in the production environment at PingCAP. We have also open-sourced all APIs of TiInsight to facilitate research within the EDA community. Through extensive evaluations by a real-world user study, we demonstrate that TiInsight offers remarkable performance compared to human experts. Specifically, TiSQL achieves an execution accuracy of 86.3% on the Spider dataset using GPT-4. It also demonstrates state-of-the-art performance on the Bird dataset.