Cai, Minghong
DiTCtrl: Exploring Attention Control in Multi-Modal Diffusion Transformer for Tuning-Free Multi-Prompt Longer Video Generation
Cai, Minghong, Cun, Xiaodong, Li, Xiaoyu, Liu, Wenze, Zhang, Zhaoyang, Zhang, Yong, Shan, Ying, Yue, Xiangyu
Sora-like video generation models have achieved remarkable progress with a Multi-Modal Diffusion Transformer MM-DiT architecture. However, the current video generation models predominantly focus on single-prompt, struggling to generate coherent scenes with multiple sequential prompts that better reflect real-world dynamic scenarios. While some pioneering works have explored multi-prompt video generation, they face significant challenges including strict training data requirements, weak prompt following, and unnatural transitions. To address these problems, we propose DiTCtrl, a training-free multi-prompt video generation method under MM-DiT architectures for the first time. Our key idea is to take the multi-prompt video generation task as temporal video editing with smooth transitions. To achieve this goal, we first analyze MM-DiT's attention mechanism, finding that the 3D full attention behaves similarly to that of the cross/self-attention blocks in the UNet-like diffusion models, enabling mask-guided precise semantic control across different prompts with attention sharing for multi-prompt video generation. Based on our careful design, the video generated by DiTCtrl achieves smooth transitions and consistent object motion given multiple sequential prompts without additional training. Besides, we also present MPVBench, a new benchmark specially designed for multi-prompt video generation to evaluate the performance of multi-prompt generation. Extensive experiments demonstrate that our method achieves state-of-the-art performance without additional training.
EEG-EMG FAConformer: Frequency Aware Conv-Transformer for the fusion of EEG and EMG
He, ZhengXiao, Cai, Minghong, Li, Letian, Tian, Siyuan, Dai, Ren-Jie
Motor pattern recognition paradigms are the main forms of Brain-Computer Interfaces(BCI) aimed at motor function rehabilitation and are the most easily promoted applications. In recent years, many researchers have suggested encouraging patients to perform real motor control execution simultaneously in MI-based BCI rehabilitation training systems. Electromyography (EMG) signals are the most direct physiological signals that can assess the execution of movements. Multimodal signal fusion is practically significant for decoding motor patterns. Therefore, we introduce a multimodal motion pattern recognition algorithm for EEG and EMG signals: EEG-EMG FAConformer, a method with several attention modules correlated with temporal and frequency information for motor pattern recognition. We especially devise a frequency band attention module to encode EEG information accurately and efficiently. What's more, modules like Multi-Scale Fusion Module, Independent Channel-Specific Convolution Module(ICSCM), and Fuse Module which can effectively eliminate irrelevant information in EEG and EMG signals and fully exploit hidden dynamics are developed and show great effects. Extensive experiments show that EEG-EMG FAConformer surpasses existing methods on Jeong2020 dataset, showcasing outstanding performance, high robustness and impressive stability.