Goto

Collaborating Authors

 Cai, Miaomiao


Popularity-Aware Alignment and Contrast for Mitigating Popularity Bias

arXiv.org Artificial Intelligence

Collaborative Filtering (CF) typically suffers from the significant challenge of popularity bias due to the uneven distribution of items in real-world datasets. This bias leads to a significant accuracy gap between popular and unpopular items. It not only hinders accurate user preference understanding but also exacerbates the Matthew effect in recommendation systems. To alleviate popularity bias, existing efforts focus on emphasizing unpopular items or separating the correlation between item representations and their popularity. Despite the effectiveness, existing works still face two persistent challenges: (1) how to extract common supervision signals from popular items to improve the unpopular item representations, and (2) how to alleviate the representation separation caused by popularity bias. In this work, we conduct an empirical analysis of popularity bias and propose Popularity-Aware Alignment and Contrast (PAAC) to address two challenges. Specifically, we use the common supervisory signals modeled in popular item representations and propose a novel popularity-aware supervised alignment module to learn unpopular item representations. Additionally, we suggest re-weighting the contrastive learning loss to mitigate the representation separation from a popularity-centric perspective. Finally, we validate the effectiveness and rationale of PAAC in mitigating popularity bias through extensive experiments on three real-world datasets. Our code is available at https://github.com/miaomiao-cai2/KDD2024-PAAC.


Multimodality Invariant Learning for Multimedia-Based New Item Recommendation

arXiv.org Artificial Intelligence

Multimedia-based recommendation provides personalized item suggestions by learning the content preferences of users. With the proliferation of digital devices and APPs, a huge number of new items are created rapidly over time. How to quickly provide recommendations for new items at the inference time is challenging. What's worse, real-world items exhibit varying degrees of modality missing(e.g., many short videos are uploaded without text descriptions). Though many efforts have been devoted to multimedia-based recommendations, they either could not deal with new multimedia items or assumed the modality completeness in the modeling process. In this paper, we highlight the necessity of tackling the modality missing issue for new item recommendation. We argue that users' inherent content preference is stable and better kept invariant to arbitrary modality missing environments. Therefore, we approach this problem from a novel perspective of invariant learning. However, how to construct environments from finite user behavior training data to generalize any modality missing is challenging. To tackle this issue, we propose a novel Multimodality Invariant Learning reCommendation(a.k.a. MILK) framework. Specifically, MILK first designs a cross-modality alignment module to keep semantic consistency from pretrained multimedia item features. After that, MILK designs multi-modal heterogeneous environments with cyclic mixup to augment training data, in order to mimic any modality missing for invariant user preference learning. Extensive experiments on three real datasets verify the superiority of our proposed framework. The code is available at https://github.com/HaoyueBai98/MILK.


TrOMR:Transformer-Based Polyphonic Optical Music Recognition

arXiv.org Artificial Intelligence

Optical Music Recognition (OMR) is an important technology in music and has been researched for a long time. Previous approaches for OMR are usually based on CNN for image understanding and RNN for music symbol classification. In this paper, we propose a transformer-based approach with excellent global perceptual capability for end-to-end polyphonic OMR, called TrOMR. We also introduce a novel consistency loss function and a reasonable approach for data annotation to improve recognition accuracy for complex music scores. Extensive experiments demonstrate that TrOMR outperforms current OMR methods, especially in real-world scenarios. We also develop a TrOMR system and build a camera scene dataset for full-page music scores in real-world. The code and datasets will be made available for reproducibility.