Goto

Collaborating Authors

 Cai, Fengyu


SAUCE: Selective Concept Unlearning in Vision-Language Models with Sparse Autoencoders

arXiv.org Artificial Intelligence

Unlearning methods for vision-language models (VLMs) have primarily adapted techniques from large language models (LLMs), relying on weight updates that demand extensive annotated forget sets. Moreover, these methods perform unlearning at a coarse granularity, often leading to excessive forgetting and reduced model utility. To address this issue, we introduce SAUCE, a novel method that leverages sparse autoencoders (SAEs) for fine-grained and selective concept unlearning in VLMs. Briefly, SAUCE first trains SAEs to capture high-dimensional, semantically rich sparse features. It then identifies the features most relevant to the target concept for unlearning. During inference, it selectively modifies these features to suppress specific concepts while preserving unrelated information. We evaluate SAUCE on two distinct VLMs, LLaVA-v1.5-7B and LLaMA-3.2-11B-Vision-Instruct, across two types of tasks: concrete concept unlearning (objects and sports scenes) and abstract concept unlearning (emotions, colors, and materials), encompassing a total of 60 concepts. Extensive experiments demonstrate that SAUCE outperforms state-of-the-art methods by 18.04% in unlearning quality while maintaining comparable model utility. Furthermore, we investigate SAUCE's robustness against widely used adversarial attacks, its transferability across models, and its scalability in handling multiple simultaneous unlearning requests. Our findings establish SAUCE as an effective and scalable solution for selective concept unlearning in VLMs.


$\textit{GeoHard}$: Towards Measuring Class-wise Hardness through Modelling Class Semantics

arXiv.org Artificial Intelligence

Recent advances in measuring hardness-wise properties of data guide language models in sample selection within low-resource scenarios. However, class-specific properties are overlooked for task setup and learning. How will these properties influence model learning and is it generalizable across datasets? To answer this question, this work formally initiates the concept of $\textit{class-wise hardness}$. Experiments across eight natural language understanding (NLU) datasets demonstrate a consistent hardness distribution across learning paradigms, models, and human judgment. Subsequent experiments unveil a notable challenge in measuring such class-wise hardness with instance-level metrics in previous works. To address this, we propose $\textit{GeoHard}$ for class-wise hardness measurement by modeling class geometry in the semantic embedding space. $\textit{GeoHard}$ surpasses instance-level metrics by over 59 percent on $\textit{Pearson}$'s correlation on measuring class-wise hardness. Our analysis theoretically and empirically underscores the generality of $\textit{GeoHard}$ as a fresh perspective on data diagnosis. Additionally, we showcase how understanding class-wise hardness can practically aid in improving task learning.


$\texttt{MixGR}$: Enhancing Retriever Generalization for Scientific Domain through Complementary Granularity

arXiv.org Artificial Intelligence

Recent studies show the growing significance of document retrieval in the generation of LLMs, i.e., RAG, within the scientific domain by bridging their knowledge gap. However, dense retrievers often struggle with domain-specific retrieval and complex query-document relationships, particularly when query segments correspond to various parts of a document. To alleviate such prevalent challenges, this paper introduces $\texttt{MixGR}$, which improves dense retrievers' awareness of query-document matching across various levels of granularity in queries and documents using a zero-shot approach. $\texttt{MixGR}$ fuses various metrics based on these granularities to a united score that reflects a comprehensive query-document similarity. Our experiments demonstrate that $\texttt{MixGR}$ outperforms previous document retrieval by 24.7% and 9.8% on nDCG@5 with unsupervised and supervised retrievers, respectively, averaged on queries containing multiple subqueries from five scientific retrieval datasets. Moreover, the efficacy of two downstream scientific question-answering tasks highlights the advantage of $\texttt{MixGR}$to boost the application of LLMs in the scientific domain.


A Survey of Confidence Estimation and Calibration in Large Language Models

arXiv.org Artificial Intelligence

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of tasks in various domains. Despite their impressive performance, they can be unreliable due to factual errors in their generations. Assessing their confidence and calibrating them across different tasks can help mitigate risks and enable LLMs to produce better generations. There has been a lot of recent research aiming to address this, but there has been no comprehensive overview to organize it and outline the main lessons learned. The present survey aims to bridge this gap. In particular, we outline the challenges and we summarize recent technical advancements for LLM confidence estimation and calibration. We further discuss their applications and suggest promising directions for future work.


SLIM: Explicit Slot-Intent Mapping with BERT for Joint Multi-Intent Detection and Slot Filling

arXiv.org Artificial Intelligence

Utterance-level intent detection and token-level slot filling are two key tasks for natural language understanding (NLU) in task-oriented systems. Most existing approaches assume that only a single intent exists in an utterance. However, there are often multiple intents within an utterance in real-life scenarios. In this paper, we propose a multi-intent NLU framework, called SLIM, to jointly learn multi-intent detection and slot filling based on BERT. To fully exploit the existing annotation data and capture the interactions between slots and intents, SLIM introduces an explicit slot-intent classifier to learn the many-to-one mapping between slots and intents. Empirical results on three public multi-intent datasets demonstrate (1) the superior performance of SLIM compared to the current state-of-the-art for NLU with multiple intents and (2) the benefits obtained from the slot-intent classifier.