Cai, Diana
EigenVI: score-based variational inference with orthogonal function expansions
Cai, Diana, Modi, Chirag, Margossian, Charles C., Gower, Robert M., Blei, David M., Saul, Lawrence K.
We develop EigenVI, an eigenvalue-based approach for black-box variational inference (BBVI). EigenVI constructs its variational approximations from orthogonal function expansions. For distributions over $\mathbb{R}^D$, the lowest order term in these expansions provides a Gaussian variational approximation, while higher-order terms provide a systematic way to model non-Gaussianity. These approximations are flexible enough to model complex distributions (multimodal, asymmetric), but they are simple enough that one can calculate their low-order moments and draw samples from them. EigenVI can also model other types of random variables (e.g., nonnegative, bounded) by constructing variational approximations from different families of orthogonal functions. Within these families, EigenVI computes the variational approximation that best matches the score function of the target distribution by minimizing a stochastic estimate of the Fisher divergence. Notably, this optimization reduces to solving a minimum eigenvalue problem, so that EigenVI effectively sidesteps the iterative gradient-based optimizations that are required for many other BBVI algorithms. (Gradient-based methods can be sensitive to learning rates, termination criteria, and other tunable hyperparameters.) We use EigenVI to approximate a variety of target distributions, including a benchmark suite of Bayesian models from posteriordb. On these distributions, we find that EigenVI is more accurate than existing methods for Gaussian BBVI.
Batch, match, and patch: low-rank approximations for score-based variational inference
Modi, Chirag, Cai, Diana, Saul, Lawrence K.
Black-box variational inference (BBVI) scales poorly to high dimensional problems when it is used to estimate a multivariate Gaussian approximation with a full covariance matrix. In this paper, we extend the batch-and-match (BaM) framework for score-based BBVI to problems where it is prohibitively expensive to store such covariance matrices, let alone to estimate them. Unlike classical algorithms for BBVI, which use gradient descent to minimize the reverse Kullback-Leibler divergence, BaM uses more specialized updates to match the scores of the target density and its Gaussian approximation. We extend the updates for BaM by integrating them with a more compact parameterization of full covariance matrices. In particular, borrowing ideas from factor analysis, we add an extra step to each iteration of BaM -- a patch -- that projects each newly updated covariance matrix into a more efficiently parameterized family of diagonal plus low rank matrices. We evaluate this approach on a variety of synthetic target distributions and real-world problems in high-dimensional inference.
Batch and match: black-box variational inference with a score-based divergence
Cai, Diana, Modi, Chirag, Pillaud-Vivien, Loucas, Margossian, Charles C., Gower, Robert M., Blei, David M., Saul, Lawrence K.
Most leading implementations of black-box variational inference (BBVI) are based on optimizing a stochastic evidence lower bound (ELBO). But such approaches to BBVI often converge slowly due to the high variance of their gradient estimates. In this work, we propose batch and match (BaM), an alternative approach to BBVI based on a score-based divergence. Notably, this score-based divergence can be optimized by a closed-form proximal update for Gaussian variational families with full covariance matrices. We analyze the convergence of BaM when the target distribution is Gaussian, and we prove that in the limit of infinite batch size the variational parameter updates converge exponentially quickly to the target mean and covariance. We also evaluate the performance of BaM on Gaussian and non-Gaussian target distributions that arise from posterior inference in hierarchical and deep generative models. In these experiments, we find that BaM typically converges in fewer (and sometimes significantly fewer) gradient evaluations than leading implementations of BBVI based on ELBO maximization.
Kernel Density Bayesian Inverse Reinforcement Learning
Mandyam, Aishwarya, Li, Didong, Cai, Diana, Jones, Andrew, Engelhardt, Barbara E.
Inverse reinforcement learning~(IRL) is a powerful framework to infer an agent's reward function by observing its behavior, but IRL algorithms that learn point estimates of the reward function can be misleading because there may be several functions that describe an agent's behavior equally well. A Bayesian approach to IRL models a distribution over candidate reward functions, alleviating the shortcomings of learning a point estimate. However, several Bayesian IRL algorithms use a $Q$-value function in place of the likelihood function. The resulting posterior is computationally intensive to calculate, has few theoretical guarantees, and the $Q$-value function is often a poor approximation for the likelihood. We introduce kernel density Bayesian IRL (KD-BIRL), which uses conditional kernel density estimation to directly approximate the likelihood, providing an efficient framework that, with a modified reward function parameterization, is applicable to environments with complex and infinite state spaces. We demonstrate KD-BIRL's benefits through a series of experiments in Gridworld environments and a simulated sepsis treatment task.
Multi-fidelity Monte Carlo: a pseudo-marginal approach
Cai, Diana, Adams, Ryan P.
Markov chain Monte Carlo (MCMC) is an established approach for uncertainty quantification and propagation in scientific applications. A key challenge in applying MCMC to scientific domains is computation: the target density of interest is often a function of expensive computations, such as a high-fidelity physical simulation, an intractable integral, or a slowly-converging iterative algorithm. Thus, using an MCMC algorithms with an expensive target density becomes impractical, as these expensive computations need to be evaluated at each iteration of the algorithm. In practice, these computations often approximated via a cheaper, low-fidelity computation, leading to bias in the resulting target density. Multi-fidelity MCMC algorithms combine models of varying fidelities in order to obtain an approximate target density with lower computational cost. In this paper, we describe a class of asymptotically exact multi-fidelity MCMC algorithms for the setting where a sequence of models of increasing fidelity can be computed that approximates the expensive target density of interest. We take a pseudo-marginal MCMC approach for multi-fidelity inference that utilizes a cheaper, randomized-fidelity unbiased estimator of the target fidelity constructed via random truncation of a telescoping series of the low-fidelity sequence of models. Finally, we discuss and evaluate the proposed multi-fidelity MCMC approach on several applications, including log-Gaussian Cox process modeling, Bayesian ODE system identification, PDE-constrained optimization, and Gaussian process regression parameter inference.
Active multi-fidelity Bayesian online changepoint detection
Gundersen, Gregory W., Cai, Diana, Zhou, Chuteng, Engelhardt, Barbara E., Adams, Ryan P.
Online algorithms for detecting changepoints, or abrupt shifts in the behavior of a time series, are often deployed with limited resources, e.g., to edge computing settings such as mobile phones or industrial sensors. In these scenarios it may be beneficial to trade the cost of collecting an environmental measurement against the quality or "fidelity" of this measurement and how the measurement affects changepoint estimation. For instance, one might decide between inertial measurements or GPS to determine changepoints for motion. A Bayesian approach to changepoint detection is particularly appealing because we can represent our posterior uncertainty about changepoints and make active, cost-sensitive decisions about data fidelity to reduce this posterior uncertainty. Moreover, the total cost could be dramatically lowered through active fidelity switching, while remaining robust to changes in data distribution. We propose a multi-fidelity approach that makes cost-sensitive decisions about which data fidelity to collect based on maximizing information gain with respect to changepoints. We evaluate this framework on synthetic, video, and audio data and show that this information-based approach results in accurate predictions while reducing total cost.
Finite mixture models do not reliably learn the number of components
Cai, Diana, Campbell, Trevor, Broderick, Tamara
Scientists and engineers are often interested in learning the number of subpopulations (or components) present in a data set. A common suggestion is to use a finite mixture model (FMM) with a prior on the number of components. Past work has shown the resulting FMM component-count posterior is consistent; that is, the posterior concentrates on the true generating number of components. But existing results crucially depend on the assumption that the component likelihoods are perfectly specified. In practice, this assumption is unrealistic, and empirical evidence suggests that the FMM posterior on the number of components is sensitive to the likelihood choice. In this paper, we add rigor to data-analysis folk wisdom by proving that under even the slightest model misspecification, the FMM component-count posterior diverges: the posterior probability of any particular finite number of latent components converges to 0 in the limit of infinite data. We illustrate practical consequences of our theory on simulated and real data sets.
A Bayesian Nonparametric View on Count-Min Sketch
Cai, Diana, Mitzenmacher, Michael, Adams, Ryan P.
The count-min sketch is a time- and memory-efficient randomized data structure that provides a point estimate of the number of times an item has appeared in a data stream. The count-min sketch and related hash-based data structures are ubiquitous in systems that must track frequencies of data such as URLs, IP addresses, and language n-grams. We present a Bayesian view on the count-min sketch, using the same data structure, but providing a posterior distribution over the frequencies that characterizes the uncertainty arising from the hash-based approximation. In particular, we take a nonparametric approach and consider tokens generated from a Dirichlet process (DP) random measure, which allows for an unbounded number of unique tokens. Using properties of the DP, we show that it is possible to straightforwardly compute posterior marginals of the unknown true counts and that the modes of these marginals recover the count-min sketch estimator, inheriting the associated probabilistic guarantees. Using simulated data with known ground truth, we investigate the properties of these estimators. Lastly, we also study a modified problem in which the observation stream consists of collections of tokens (i.e., documents) arising from a random measure drawn from a stable beta process, which allows for power law scaling behavior in the number of unique tokens.
A Bayesian Nonparametric View on Count-Min Sketch
Cai, Diana, Mitzenmacher, Michael, Adams, Ryan P.
The count-min sketch is a time- and memory-efficient randomized data structure that provides a point estimate of the number of times an item has appeared in a data stream. The count-min sketch and related hash-based data structures are ubiquitous in systems that must track frequencies of data such as URLs, IP addresses, and language n-grams. We present a Bayesian view on the count-min sketch, using the same data structure, but providing a posterior distribution over the frequencies that characterizes the uncertainty arising from the hash-based approximation. In particular, we take a nonparametric approach and consider tokens generated from a Dirichlet process (DP) random measure, which allows for an unbounded number of unique tokens. Using properties of the DP, we show that it is possible to straightforwardly compute posterior marginals of the unknown true counts and that the modes of these marginals recover the count-min sketch estimator, inheriting the associated probabilistic guarantees. Using simulated data with known ground truth, we investigate the properties of these estimators. Lastly, we also study a modified problem in which the observation stream consists of collections of tokens (i.e., documents) arising from a random measure drawn from a stable beta process, which allows for power law scaling behavior in the number of unique tokens.
Edge-exchangeable graphs and sparsity (NIPS 2016)
Cai, Diana, Campbell, Trevor, Broderick, Tamara
Many popular network models rely on the assumption of (vertex) exchangeability, in which the distribution of the graph is invariant to relabelings of the vertices. However, the Aldous-Hoover theorem guarantees that these graphs are dense or empty with probability one, whereas many real-world graphs are sparse. We present an alternative notion of exchangeability for random graphs, which we call edge exchangeability, in which the distribution of a graph sequence is invariant to the order of the edges. We demonstrate that edge-exchangeable models, unlike models that are traditionally vertex exchangeable, can exhibit sparsity. To do so, we outline a general framework for graph generative models; by contrast to the pioneering work of Caron and Fox (2015), models within our framework are stationary across steps of the graph sequence. In particular, our model grows the graph by instantiating more latent atoms of a single random measure as the dataset size increases, rather than adding new atoms to the measure.