Goto

Collaborating Authors

 Cagnazzo, Marco


Find the Lady: Permutation and Re-Synchronization of Deep Neural Networks

arXiv.org Artificial Intelligence

Deep neural networks are characterized by multiple symmetrical, equi-loss solutions that are redundant. Thus, the order of neurons in a layer and feature maps can be given arbitrary permutations, without affecting (or minimally affecting) their output. If we shuffle these neurons, or if we apply to them some perturbations (like fine-tuning) can we put them back in the original order i.e. re-synchronize? Is there a possible corruption threat? Answering these questions is important for applications like neural network white-box watermarking for ownership tracking and integrity verification. We advance a method to re-synchronize the order of permuted neurons. Our method is also effective if neurons are further altered by parameter pruning, quantization, and fine-tuning, showing robustness to integrity attacks. Additionally, we provide theoretical and practical evidence for the usual means to corrupt the integrity of the model, resulting in a solution to counter it. We test our approach on popular computer vision datasets and models, and we illustrate the threat and our countermeasure on a popular white-box watermarking method.


HEMP: High-order Entropy Minimization for neural network comPression

arXiv.org Artificial Intelligence

We formulate the entropy of a quantized artificial neural network as a differentiable function that can be plugged as a regularization term into the cost function minimized by gradient descent. Our formulation scales efficiently beyond the first order and is agnostic of the quantization scheme. The network can then be trained to minimize the entropy of the quantized parameters, so that they can be optimally compressed via entropy coding. We experiment with our entropy formulation at quantizing and compressing well-known network architectures over multiple datasets. Our approach compares favorably over similar methods, enjoying the benefits of higher order entropy estimate, showing flexibility towards non-uniform quantization (we use Lloyd-max quantization), scalability towards any entropy order to be minimized and efficiency in terms of compression. We show that HEMP is able to work in synergy with other approaches aiming at pruning or quantizing the model itself, delivering significant benefits in terms of storage size compressibility without harming the model's performance.