Cafagna, Michele
ViLMA: A Zero-Shot Benchmark for Linguistic and Temporal Grounding in Video-Language Models
Kesen, Ilker, Pedrotti, Andrea, Dogan, Mustafa, Cafagna, Michele, Acikgoz, Emre Can, Parcalabescu, Letitia, Calixto, Iacer, Frank, Anette, Gatt, Albert, Erdem, Aykut, Erdem, Erkut
With the ever-increasing popularity of pretrained Video-Language Models (VidLMs), there is a pressing need to develop robust evaluation methodologies that delve deeper into their visio-linguistic capabilities. To address this challenge, we present ViLMA (Video Language Model Assessment), a task-agnostic benchmark that places the assessment of fine-grained capabilities of these models on a firm footing. Task-based evaluations, while valuable, fail to capture the complexities and specific temporal aspects of moving images that VidLMs need to process. Through carefully curated counterfactuals, ViLMA offers a controlled evaluation suite that sheds light on the true potential of these models, as well as their performance gaps compared to human-level understanding. ViLMA also includes proficiency tests, which assess basic capabilities deemed essential to solving the main counterfactual tests. We show that current VidLMs' grounding abilities are no better than those of vision-language models which use static images. This is especially striking once the performance on proficiency tests is factored in. Our benchmark serves as a catalyst for future research on VidLMs, helping to highlight areas that still need to be explored.
HL Dataset: Visually-grounded Description of Scenes, Actions and Rationales
Cafagna, Michele, van Deemter, Kees, Gatt, Albert
Current captioning datasets focus on object-centric captions, describing the visible objects in the image, e.g. "people eating food in a park". Although these datasets are useful to evaluate the ability of Vision & Language models to recognize and describe visual content, they do not support controlled experiments involving model testing or fine-tuning, with more high-level captions, which humans find easy and natural to produce. For example, people often describe images based on the type of scene they depict ('people at a holiday resort') and the actions they perform ('people having a picnic'). Such descriptions draw on personal experience and commonsense assumptions. We present the High-Level Dataset a dataset extending 14997 images from the COCO dataset, aligned with a new set of 134,973 human-annotated (high-level) captions collected along three axes: scenes, actions, and rationales. We further extend this dataset with confidence scores collected from an independent set of readers, as well as a set of narrative captions generated synthetically, by combining each of the three axes. We describe this dataset and analyse it extensively. We also present baseline results for the High-Level Captioning task.
Interpreting Vision and Language Generative Models with Semantic Visual Priors
Cafagna, Michele, Rojas-Barahona, Lina M., van Deemter, Kees, Gatt, Albert
When applied to Image-to-text models, interpretability methods often provide token-by-token explanations namely, they compute a visual explanation for each token of the generated sequence. Those explanations are expensive to compute and unable to comprehensively explain the model's output. Therefore, these models often require some sort of approximation that eventually leads to misleading explanations. We develop a framework based on SHAP, that allows for generating comprehensive, meaningful explanations leveraging the meaning representation of the output sequence as a whole. Moreover, by exploiting semantic priors in the visual backbone, we extract an arbitrary number of features that allows the efficient computation of Shapley values on large-scale models, generating at the same time highly meaningful visual explanations. We demonstrate that our method generates semantically more expressive explanations than traditional methods at a lower compute cost and that it can be generalized over other explainability methods.
Understanding Cross-modal Interactions in V&L Models that Generate Scene Descriptions
Cafagna, Michele, van Deemter, Kees, Gatt, Albert
Image captioning models tend to describe images in an object-centric way, emphasising visible objects. But image descriptions can also abstract away from objects and describe the type of scene depicted. In this paper, we explore the potential of a state-of-the-art Vision and Language model, VinVL, to caption images at the scene level using (1) a novel dataset which pairs images with both object-centric and scene descriptions. Through (2) an in-depth analysis of the effect of the fine-tuning, we show (3) that a small amount of curated data suffices to generate scene descriptions without losing the capability to identify object-level concepts in the scene; the model acquires a more holistic view of the image compared to when object-centric descriptions are generated. We discuss the parallels between these results and insights from computational and cognitive science research on scene perception.
VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena
Parcalabescu, Letitia, Cafagna, Michele, Muradjan, Lilitta, Frank, Anette, Calixto, Iacer, Gatt, Albert
We propose VALSE (Vision And Language Structured Evaluation), a novel benchmark designed for testing general-purpose pretrained vision and language (V&L) models for their visio-linguistic grounding capabilities on specific linguistic phenomena. VALSE offers a suite of six tests covering various linguistic constructs. Solving these requires models to ground linguistic phenomena in the visual modality, allowing more fine-grained evaluations than hitherto possible. We build VALSE using methods that support the construction of valid foils, and report results from evaluating five widely-used V&L models. Our experiments suggest that current models have considerable difficulty addressing most phenomena. Hence, we expect VALSE to serve as an important benchmark to measure future progress of pretrained V&L models from a linguistic perspective, complementing the canonical task-centred V&L evaluations.