Cámbara, Guillermo
BASE TTS: Lessons from building a billion-parameter Text-to-Speech model on 100K hours of data
Łajszczak, Mateusz, Cámbara, Guillermo, Li, Yang, Beyhan, Fatih, van Korlaar, Arent, Yang, Fan, Joly, Arnaud, Martín-Cortinas, Álvaro, Abbas, Ammar, Michalski, Adam, Moinet, Alexis, Karlapati, Sri, Muszyńska, Ewa, Guo, Haohan, Putrycz, Bartosz, Gambino, Soledad López, Yoo, Kayeon, Sokolova, Elena, Drugman, Thomas
We introduce a text-to-speech (TTS) model called BASE TTS, which stands for Big Adaptive Streamable TTS with Emergent abilities. BASE TTS is the largest TTS model to-date, trained on 100K hours of public domain speech data, achieving a new state-of-the-art in speech naturalness. It deploys a 1-billionparameter autoregressive Transformer that converts raw texts into discrete codes ("speechcodes") followed by a convolution-based decoder which converts these speechcodes into waveforms in an incremental, streamable manner. Further, our speechcodes are built using a novel speech tokenization technique that features speaker ID disentanglement and compression with byte-pair encoding. Echoing the widely-reported "emergent abilities" of large language models when trained on increasing volume of data, we show that BASE TTS variants built with 10K+ hours and 500M+ parameters begin to demonstrate natural prosody on textually complex sentences. We design and share a specialized dataset to measure these emergent abilities for text-to-speech. We showcase state-of-the-art naturalness of BASE TTS by evaluating against baselines that include publicly available large-scale text-tospeech systems: YourTTS, Bark and TortoiseTTS. Audio samples generated by the model can be heard at https://amazon-ltts-paper.com/.
Data Augmentation for Low-Resource Quechua ASR Improvement
Zevallos, Rodolfo, Bel, Nuria, Cámbara, Guillermo, Farrús, Mireia, Luque, Jordi
Automatic Speech Recognition (ASR) is a key element in new services that helps users to interact with an automated system. Deep learning methods have made it possible to deploy systems with word error rates below 5% for ASR of English. However, the use of these methods is only available for languages with hundreds or thousands of hours of audio and their corresponding transcriptions. For the so-called low-resource languages to speed up the availability of resources that can improve the performance of their ASR systems, methods of creating new resources on the basis of existing ones are being investigated. In this paper we describe our data augmentation approach to improve the results of ASR models for low-resource and agglutinative languages. We carry out experiments developing an ASR for Quechua using the wav2letter++ model. We reduced WER by 8.73% through our approach to the base model. The resulting ASR model obtained 22.75% WER and was trained with 99 hours of original resources and 99 hours of synthetic data obtained with a combination of text augmentation and synthetic speech generati
Convolutional Speech Recognition with Pitch and Voice Quality Features
Cámbara, Guillermo, Luque, Jordi, Farrús, Mireia
The effects of adding pitch and voice quality features such as jitter and shimmer to a state-of-the-art CNN model for Automatic Speech Recognition are studied in this work. Pitch features have been previously used for improving classical HMM and DNN baselines, while jitter and shimmer parameters have proven to be useful for tasks like speaker or emotion recognition. Up to our knowledge, this is the first work combining such pitch and voice quality features with modern convolutional architectures, showing improvements up to 2% absolute WER points, for the publicly available Spanish Common Voice dataset. Particularly, our work combines these features with mel-frequency spectral coefficients (MFSCs) to train a convolutional architecture with Gated Linear Units (Conv GLUs). Such models have shown to yield small word error rates, while being very suitable for parallel processing for online streaming recognition use cases. We have added pitch and voice quality functionality to Facebook's wav2letter speech recognition framework, and we provide with such code and recipes to the community, to carry on with further experiments. Besides, to the best of our knowledge, our Spanish Common Voice recipe is the first public Spanish recipe for wav2letter.