Goto

Collaborating Authors

 Cámara, Javier


CaRE: Finding Root Causes of Configuration Issues in Highly-Configurable Robots

arXiv.org Artificial Intelligence

Robotic systems have subsystems with a combinatorially large configuration space and hundreds or thousands of possible software and hardware configuration options interacting non-trivially. The configurable parameters are set to target specific objectives, but they can cause functional faults when incorrectly configured. Finding the root cause of such faults is challenging due to the exponentially large configuration space and the dependencies between the robot's configuration settings and performance. This paper proposes CaRE -- a method for diagnosing the root cause of functional faults through the lens of causality. CaRE abstracts the causal relationships between various configuration options and the robot's performance objectives by learning a causal structure and estimating the causal effects of options on robot performance indicators. We demonstrate CaRE's efficacy by finding the root cause of the observed functional faults and validating the diagnosed root cause by conducting experiments in both physical robots (Husky and Turtlebot 3) and in simulation (Gazebo). Furthermore, we demonstrate that the causal models learned from robots in simulation (e.g., Husky in Gazebo) are transferable to physical robots across different platforms (e.g., Husky and Turtlebot 3).


Machine Learning Meets Quantitative Planning: Enabling Self-Adaptation in Autonomous Robots

arXiv.org Artificial Intelligence

Modern cyber-physical systems (e.g., robotics systems) are typically composed of physical and software components, the characteristics of which are likely to change over time. Assumptions about parts of the system made at design time may not hold at run time, especially when a system is deployed for long periods (e.g., over decades). Self-adaptation is designed to find reconfigurations of systems to handle such run-time inconsistencies. Planners can be used to find and enact optimal reconfigurations in such an evolving context. However, for systems that are highly configurable, such planning becomes intractable due to the size of the adaptation space. To overcome this challenge, in this paper we explore an approach that (a) uses machine learning to find Pareto-optimal configurations without needing to explore every configuration and (b) restricts the search space to such configurations to make planning tractable. We explore this in the context of robot missions that need to consider task timeliness and energy consumption. An independent evaluation shows that our approach results in high-quality adaptation plans in uncertain and adversarial environments.