Goto

Collaborating Authors

 Buyuktosunoglu, Alper


Efficient Pruning for Machine Learning Under Homomorphic Encryption

arXiv.org Artificial Intelligence

Privacy-preserving machine learning (PPML) solutions are gaining widespread popularity. Among these, many rely on homomorphic encryption (HE) that offers confidentiality of the model and the data, but at the cost of large latency and memory requirements. Pruning neural network (NN) parameters improves latency and memory in plaintext ML but has little impact if directly applied to HE-based PPML. We introduce a framework called HE-PEx that comprises new pruning methods, on top of a packing technique called tile tensors, for reducing the latency and memory of PPML inference. HE-PEx uses permutations to prune additional ciphertexts, and expansion to recover inference loss. We demonstrate the effectiveness of our methods for pruning fully-connected and convolutional layers in NNs on PPML tasks, namely, image compression, denoising, and classification, with autoencoders, multilayer perceptrons (MLPs) and convolutional neural networks (CNNs). We implement and deploy our networks atop a framework called HElayers, which shows a 10-35% improvement in inference speed and a 17-35% decrease in memory requirement over the unpruned network, corresponding to 33-65% fewer ciphertexts, within a 2.5% degradation in inference accuracy over the unpruned network. Compared to the state-of-the-art pruning technique for PPML, our techniques generate networks with 70% fewer ciphertexts, on average, for the same degradation limit.


Improving Efficiency in Large-Scale Decentralized Distributed Training

arXiv.org Machine Learning

Decentralized Parallel SGD (D-PSGD) and its asynchronous variant Asynchronous Parallel SGD (AD-PSGD) is a family of distributed learning algorithms that have been demonstrated to perform well for large-scale deep learning tasks. One drawback of (A)D-PSGD is that the spectral gap of the mixing matrix decreases when the number of learners in the system increases, which hampers convergence. In this paper, we investigate techniques to accelerate (A)D-PSGD based training by improving the spectral gap while minimizing the communication cost. We demonstrate the effectiveness of our proposed techniques by running experiments on the 2000-hour Switchboard speech recognition task and the ImageNet computer vision task. On an IBM P9 supercomputer, our system is able to train an LSTM acoustic model in 2.28 hours with 7.5% WER on the Hub5-2000 Switchboard (SWB) test set and 13.3% WER on the CallHome (CH) test set using 64 V100 GPUs and in 1.98 hours with 7.7% WER on SWB and 13.3% WER on CH using 128 V100 GPUs, the fastest training time reported to date. Index T erms -- distributed training, decentralized SGD, parallel computing, automatic speech recognition, image recognition.


A Highly Efficient Distributed Deep Learning System For Automatic Speech Recognition

arXiv.org Machine Learning

Modern Automatic Speech Recognition (ASR) systems rely on distributed deep learning to for quick training completion. To enable efficient distributed training, it is imperative that the training algorithms can converge with a large mini-batch size. In this work, we discovered that Asynchronous Decentralized Parallel Stochastic Gradient Descent (ADPSGD) can work with much larger batch size than commonly used Synchronous SGD (SSGD) algorithm. On commonly used public SWB-300 and SWB-2000 ASR datasets, ADPSGD can converge with a batch size 3X as large as the one used in SSGD, thus enable training at a much larger scale. Further, we proposed a Hierarchical-ADPSGD (H-ADPSGD) system in which learners on the same computing node construct a super learner via a fast allreduce implementation, and super learners deploy ADPSGD algorithm among themselves. On a 64 Nvidia V100 GPU cluster connected via a 100Gb/s Ethernet network, our system is able to train SWB-2000 to reach a 7.6% WER on the Hub5-2000 Switchboard (SWB) test-set and a 13.2% WER on the Call-home (CH) test-set in 5.2 hours. To the best of our knowledge, this is the fastest ASR training system that attains this level of model accuracy for SWB-2000 task to be ever reported in the literature.