Butman, Moshe
Tighter Bounds on the Information Bottleneck with Application to Deep Learning
Weingarten, Nir, Yakhini, Zohar, Butman, Moshe, Gilad-Bachrach, Ran
Deep Neural Nets (DNNs) learn latent representations induced by their downstream task, objective function, and other parameters. The quality of the learned representations impacts the DNN's generalization ability and the coherence of the emerging latent space. The Information Bottleneck (IB) provides a hypothetically optimal framework for data modeling, yet it is often intractable. Recent efforts combined DNNs with the IB by applying VAE-inspired variational methods to approximate bounds on mutual information, resulting in improved robustness to adversarial attacks. This work introduces a new and tighter variational bound for the IB, improving performance of previous IB-inspired DNNs. These advancements strengthen the case for the IB and its variational approximations as a data modeling framework, and provide a simple method to significantly enhance the adversarial robustness of classifier DNNs.
Efficient Methods for Privacy Preserving Face Detection
Avidan, Shai, Butman, Moshe
Bob offers a face-detection web service where clients can submit their images for analysis. Alice would very much like to use the service, but is reluctant to reveal the content of her images to Bob. Bob, for his part, is reluctant to release his face detector, as he spent a lot of time, energy and money constructing it. Secure Multi-Party computations use cryptographic tools to solve this problem without leaking any information. Unfortunately, these methods are slow to compute and we introduce acouple of machine learning techniques that allow the parties to solve the problem while leaking a controlled amount of information. The first method is an information-bottleneck variant of AdaBoost that lets Bob find a subset of features that are enough for classifying an image patch, but not enough to actually reconstruct it.The second machine learning technique is active learning that allows Alice to construct an online classifier, based on a small number of calls to Bob's face detector. She can then use her online classifier as a fast rejector before using a cryptographically secure classifier on the remaining image patches.
The power of feature clustering: An application to object detection
Avidan, Shai, Butman, Moshe
We give a fast rejection scheme that is based on image segments and demonstrate it on the canonical example of face detection. However, instead offocusing on the detection step we focus on the rejection step and show that our method is simple and fast to be learned, thus making it an excellent pre-processing step to accelerate standard machine learning classifiers, such as neural-networks, Bayes classifiers or SVM. We decompose acollection of face images into regions of pixels with similar behavior over the image set. The relationships between the mean and variance of image segments are used to form a cascade of rejectors that can reject over 99.8% of image patches, thus only a small fraction of the image patches must be passed to a full-scale classifier. Moreover, the training time for our method is much less than an hour, on a standard PC.