Goto

Collaborating Authors

 Burgess, A. Neil


Estimating Equivalent Kernels for Neural Networks: A Data Perturbation Approach

Neural Information Processing Systems

The perturbation method which we have presented overcomes the limitations of standard approaches, which are only appropriate for models with a single layer of adjustable weights, albeit at considerable computational expense. It has the added bonus of automatically taking into account the effect of regularisation techniques such as weight decay. The experimental results illustrate the application of the technique to two simple problems. As expected the number of degrees of freedom in the models is found to be related to the amount of weight decay used during training. The equivalent kernels are found to vary significantly in different regions of input space and the functions reconstructed from the estimated smoother matrices closely match the origna!


Estimating Equivalent Kernels for Neural Networks: A Data Perturbation Approach

Neural Information Processing Systems

The perturbation method which we have presented overcomes the limitations of standard approaches, which are only appropriate for models with a single layer of adjustable weights, albeit at considerable computational expense. It has the added bonus of automatically taking into account the effect of regularisation techniques such as weight decay. The experimental results illustrate the application of the technique to two simple problems. As expected the number of degrees of freedom in the models is found to be related to the amount of weight decay used during training. The equivalent kernels are found to vary significantly in different regions of input space and the functions reconstructed from the estimated smoother matrices closely match the origna!