Goto

Collaborating Authors

 Burger, Doug


Microscaling Data Formats for Deep Learning

arXiv.org Artificial Intelligence

Narrow bit-width data formats are key to reducing the computational and storage costs of modern deep learning applications. This paper evaluates Microscaling (MX) data formats that combine a per-block scaling factor with narrow floating-point and integer types for individual elements. MX formats balance the competing needs of hardware efficiency, model accuracy, and user friction. Empirical results on over two dozen benchmarks demonstrate practicality of MX data formats as a drop-in replacement for baseline FP32 for AI inference and training with low user friction. We also show the first instance of training generative language models at sub-8-bit weights, activations, and gradients with minimal accuracy loss and no modifications to the training recipe.


AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation

arXiv.org Artificial Intelligence

AutoGen is an open-source framework that allows developers to build LLM applications via multiple agents that can converse with each other to accomplish tasks. AutoGen agents are customizable, conversable, and can operate in various modes that employ combinations of LLMs, human inputs, and tools. Using AutoGen, developers can also flexibly define agent interaction behaviors. Both natural language and computer code can be used to program flexible conversation patterns for different applications. AutoGen serves as a generic infrastructure to build diverse applications of various complexities and LLM capacities. Empirical studies demonstrate the effectiveness of the framework in many example applications, with domains ranging from mathematics, coding, question answering, operations research, online decision-making, entertainment, etc.


With Shared Microexponents, A Little Shifting Goes a Long Way

arXiv.org Artificial Intelligence

This paper introduces Block Data Representations (BDR), a framework for exploring and evaluating a wide spectrum of narrow-precision formats for deep learning. It enables comparison of popular quantization standards, and through BDR, new formats based on shared microexponents (MX) are identified, which outperform other state-of-the-art quantization approaches, including narrow-precision floating-point and block floating-point. MX utilizes multiple levels of quantization scaling with ultra-fine scaling factors based on shared microexponents in the hardware. The effectiveness of MX is demonstrated on real-world models including large-scale generative pretraining and inferencing, and production-scale recommendation systems.


Evolving Compiler Heuristics to Manage Communication and Contention

AAAI Conferences

As computer architectures become increasingly complex, hand-tuning compiler heuristics becomes increasingly tedious and time consuming for compiler developers. This paper presents a case study that uses a genetic algorithm to learn a compiler policy. The target policy implicitly balances communication and contention among processing elements of the TRIPS processor, a physically realized prototype chip. We learn specialized policies for individual programs as well as general policies that work well across all programs. We also employ a two-stage method that first classifies the code being compiled based on salient characteristics, and then chooses a specialized policy based on that classification. This work is particularly interesting for the AI community because it 1) emphasizes the need for increased collaboration between AI researchers and researchers from other branches of computer science and 2) discusses a machine learning setup where training on the custom hardware requires weeks of training, rather than the more typical minutes or hours.