Goto

Collaborating Authors

 Bukhsh, Zaharah A.


A Maintenance Planning Framework using Online and Offline Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Cost-effective asset management is an area of interest across several industries. Specifically, this paper develops a deep reinforcement learning (DRL) solution to automatically determine an optimal rehabilitation policy for continuously deteriorating water pipes. We approach the problem of rehabilitation planning in an online and offline DRL setting. In online DRL, the agent interacts with a simulated environment of multiple pipes with distinct lengths, materials, and failure rate characteristics. We train the agent using deep Q-learning (DQN) to learn an optimal policy with minimal average costs and reduced failure probability. In offline learning, the agent uses static data, e.g., DQN replay data, to learn an optimal policy via a conservative Q-learning algorithm without further interactions with the environment. We demonstrate that DRL-based policies improve over standard preventive, corrective, and greedy planning alternatives. Additionally, learning from the fixed DQN replay dataset in an offline setting further improves the performance. The results warrant that the existing deterioration profiles of water pipes consisting of large and diverse states and action trajectories provide a valuable avenue to learn rehabilitation policies in the offline setting, which can be further fine-tuned using the simulator.


ProcessTransformer: Predictive Business Process Monitoring with Transformer Network

arXiv.org Artificial Intelligence

Predictive business process monitoring focuses on predicting future characteristics of a running process using event logs. The foresight into process execution promises great potentials for efficient operations, better resource management, and effective customer services. Deep learning-based approaches have been widely adopted in process mining to address the limitations of classical algorithms for solving multiple problems, especially the next event and remaining-time prediction tasks. Nevertheless, designing a deep neural architecture that performs competitively across various tasks is challenging as existing methods fail to capture long-range dependencies in the input sequences and perform poorly for lengthy process traces. In this paper, we propose ProcessTransformer, an approach for learning high-level representations from event logs with an attention-based network. Our model incorporates long-range memory and relies on a self-attention mechanism to establish dependencies between a multitude of event sequences and corresponding outputs. We evaluate the applicability of our technique on nine real event logs. We demonstrate that the transformer-based model outperforms several baselines of prior techniques by obtaining on average above 80% accuracy for the task of predicting the next activity. Our method also perform competitively, compared to baselines, for the tasks of predicting event time and remaining time of a running case.