Buduru, Arun Balaji
Are Music Foundation Models Better at Singing Voice Deepfake Detection? Far-Better Fuse them with Speech Foundation Models
Phukan, Orchid Chetia, Jain, Sarthak, Behera, Swarup Ranjan, Buduru, Arun Balaji, Sharma, Rajesh, Prasanna, S. R Mahadeva
In this study, for the first time, we extensively investigate whether music foundation models (MFMs) or speech foundation models (SFMs) work better for singing voice deepfake detection (SVDD), which has recently attracted attention in the research community. For this, we perform a comprehensive comparative study of state-of-the-art (SOTA) MFMs (MERT variants and music2vec) and SFMs (pre-trained for general speech representation learning as well as speaker recognition). We show that speaker recognition SFM representations perform the best amongst all the foundation models (FMs), and this performance can be attributed to its higher efficacy in capturing the pitch, tone, intensity, etc, characteristics present in singing voices. To our end, we also explore the fusion of FMs for exploiting their complementary behavior for improved SVDD, and we propose a novel framework, FIONA for the same. With FIONA, through the synchronization of x-vector (speaker recognition SFM) and MERT-v1-330M (MFM), we report the best performance with the lowest Equal Error Rate (EER) of 13.74 %, beating all the individual FMs as well as baseline FM fusions and achieving SOTA results.
Towards Multilingual Audio-Visual Question Answering
Phukan, Orchid Chetia, Mallick, Priyabrata, Behera, Swarup Ranjan, Narayani, Aalekhya Satya, Buduru, Arun Balaji, Sharma, Rajesh
In this paper, we work towards extending Audio-Visual Question Answering (AVQA) to multilingual settings. Existing AVQA research has predominantly revolved around English and replicating it for addressing AVQA in other languages requires a substantial allocation of resources. As a scalable solution, we leverage machine translation and present two multilingual AVQA datasets for eight languages created from existing benchmark AVQA datasets. This prevents extra human annotation efforts of collecting questions and answers manually. To this end, we propose, MERA framework, by leveraging state-of-the-art (SOTA) video, audio, and textual foundation models for AVQA in multiple languages. We introduce a suite of models namely MERA-L, MERA-C, MERA-T with varied model architectures to benchmark the proposed datasets. We believe our work will open new research directions and act as a reference benchmark for future works in multilingual AVQA.
BB-Patch: BlackBox Adversarial Patch-Attack using Zeroth-Order Optimization
Kumar, Satyadwyoom, Gupta, Saurabh, Buduru, Arun Balaji
Deep Learning has become popular due to its vast applications in almost all domains. However, models trained using deep learning are prone to failure for adversarial samples and carry a considerable risk in sensitive applications. Most of these adversarial attack strategies assume that the adversary has access to the training data, the model parameters, and the input during deployment, hence, focus on perturbing the pixel level information present in the input image. Adversarial Patches were introduced to the community which helped in bringing out the vulnerability of deep learning models in a much more pragmatic manner but here the attacker has a white-box access to the model parameters. Recently, there has been an attempt to develop these adversarial attacks using black-box techniques. However, certain assumptions such as availability large training data is not valid for a real-life scenarios. In a real-life scenario, the attacker can only assume the type of model architecture used from a select list of state-of-the-art architectures while having access to only a subset of input dataset. Hence, we propose an black-box adversarial attack strategy that produces adversarial patches which can be applied anywhere in the input image to perform an adversarial attack.
How Paralingual are Paralinguistic Representations? A Case Study in Speech Emotion Recognition
Phukan, Orchid Chetia, Kashyap, Gautam Siddharth, Buduru, Arun Balaji, Sharma, Rajesh
Pre-trained Models (PTMs) have facilitated substantial progress in the field of Speech Emotion Recognition (SER). SER is an area with applications ranging from HumanComputer Interaction to Healthcare. Recent studies have leveraged various PTM representations as input features for downstream models for SER. PTM specifically pre-trained for paralinguistic tasks have obtained state-of-the-art (SOTA) performance for SER. However, such PTM haven't been evaluated for SER in multilingual settings and experimented only with English. So, we fill this gap, by performing a comprehensive comparative study of five PTMs (TRILLsson, wav2vec2, XLS-R, x-vector, Whisper) for assessing the effectiveness of paralingual PTM (TRILLsson) for SER across multiple languages. Representations from TRILLsson achieved the best performance among all the PTMs. This demonstrates that TRILLsson is able to effectively capture the various paralinguistic features from speech data for better SER. We also show that downstream models using TRILLsson representations achieve SOTA performance in terms of accuracy across various multi-lingual datasets.
A Comparative Study of Pre-trained Speech and Audio Embeddings for Speech Emotion Recognition
Phukan, Orchid Chetia, Buduru, Arun Balaji, Sharma, Rajesh
Pre-trained models (PTMs) have shown great promise in the speech and audio domain. Embeddings leveraged from these models serve as inputs for learning algorithms with applications in various downstream tasks. One such crucial task is Speech Emotion Recognition (SER) which has a wide range of applications, including dynamic analysis of customer calls, mental health assessment, and personalized language learning. PTM embeddings have helped advance SER, however, a comprehensive comparison of these PTM embeddings that consider multiple facets such as embedding model architecture, data used for pre-training, and the pre-training procedure being followed is missing. A thorough comparison of PTM embeddings will aid in the faster and more efficient development of models and enable their deployment in real-world scenarios. In this work, we exploit this research gap and perform a comparative analysis of embeddings extracted from eight speech and audio PTMs (wav2vec 2.0, data2vec, wavLM, UniSpeech-SAT, wav2clip, YAMNet, x-vector, ECAPA). We perform an extensive empirical analysis with four speech emotion datasets (CREMA-D, TESS, SAVEE, Emo-DB) by training three algorithms (XGBoost, Random Forest, FCN) on the derived embeddings. The results of our study indicate that the best performance is achieved by algorithms trained on embeddings derived from PTMs trained for speaker recognition followed by wav2clip and UniSpeech-SAT. This can relay that the top performance by embeddings from speaker recognition PTMs is most likely due to the model taking up information about numerous speech features such as tone, accent, pitch, and so on during its speaker recognition training. Insights from this work will assist future studies in their selection of embeddings for applications related to SER.
Multi-objective Reinforcement Learning based approach for User-Centric Power Optimization in Smart Home Environments
Gupta, Saurabh, Bhambri, Siddhant, Dhingra, Karan, Buduru, Arun Balaji, Kumaraguru, Ponnurangam
Smart homes require every device inside them to be connected with each other at all times, which leads to a lot of power wastage on a daily basis. As the devices inside a smart home increase, it becomes difficult for the user to control or operate every individual device optimally. Therefore, users generally rely on power management systems for such optimization but often are not satisfied with the results. In this paper, we present a novel multi-objective reinforcement learning framework with two-fold objectives of minimizing power consumption and maximizing user satisfaction. The framework explores the trade-off between the two objectives and converges to a better power management policy when both objectives are considered while finding an optimal policy. We experiment on real-world smart home data, and show that the multi-objective approaches: i) establish trade-off between the two objectives, ii) achieve better combined user satisfaction and power consumption than single-objective approaches. We also show that the devices that are used regularly and have several fluctuations in device modes at regular intervals should be targeted for optimization, and the experiments on data from other smart homes fetch similar results, hence ensuring transfer-ability of the proposed framework.
imdpGAN: Generating Private and Specific Data with Generative Adversarial Networks
Gupta, Saurabh, Buduru, Arun Balaji, Kumaraguru, Ponnurangam
Generative Adversarial Network (GAN) and its variants have shown promising results in generating synthetic data. However, the issues with GANs are: (i) the learning happens around the training samples and the model often ends up remembering them, consequently, compromising the privacy of individual samples - this becomes a major concern when GANs are applied to training data including personally identifiable information, (ii) the randomness in generated data - there is no control over the specificity of generated samples. To address these issues, we propose imdpGAN - an information maximizing differentially private Generative Adversarial Network. It is an end-to-end framework that simultaneously achieves privacy protection and learns latent representations. With experiments on MNIST dataset, we show that imdpGAN preserves the privacy of the individual data point, and learns latent codes to control the specificity of the generated samples. We perform binary classification on digit pairs to show the utility versus privacy trade-off. The classification accuracy decreases as we increase privacy levels in the framework. We also experimentally show that the training process of imdpGAN is stable but experience a 10-fold time increase as compared with other GAN frameworks. Finally, we extend imdpGAN framework to CelebA dataset to show how the privacy and learned representations can be used to control the specificity of the output.
A Study of Black Box Adversarial Attacks in Computer Vision
Bhambri, Siddhant, Muku, Sumanyu, Tulasi, Avinash, Buduru, Arun Balaji
Machine learning has seen tremendous advances in the past few years which has lead to deep learning models being deployed in varied applications of day-to-day life. Attacks on such models using perturbations, particularly in real-life scenarios, pose a serious challenge to their applicability, pushing research into the direction which aims to enhance the robustness of these models. After the introduction of these perturbations by Szegedy et al., significant amount of research has focused on the reliability of such models, primarily in two aspects - white-box, where the adversary has access to the targeted model and related parameters; and the black-box, which resembles a real-life scenario with the adversary having almost no knowledge of the model to be attacked. We propose to attract attention on the latter scenario and thus, present a comprehensive comparative study among the different adversarial black-box attack approaches proposed till date. The second half of this literature survey focuses on the defense techniques. This is the first study, to the best of our knowledge, that specifically focuses on the black-box setting to motivate future work on the same.