Goto

Collaborating Authors

 Bruno, Alessandro


Comparative clinical evaluation of "memory-efficient" synthetic 3d generative adversarial networks (gan) head-to-head to state of art: results on computed tomography of the chest

arXiv.org Artificial Intelligence

Introduction: Generative Adversarial Networks (GANs) are increasingly used to generate synthetic medical images, addressing the critical shortage of annotated data for training Artificial Intelligence (AI) systems. This study introduces a novel memory-efficient GAN architecture, incorporating Conditional Random Fields (CRFs) to generate high-resolution 3D medical images and evaluates its performance against the state-of-the-art hierarchical (HA)-GAN model. Materials and Methods: The CRF-GAN was trained using the open-source lung CT LUNA16 dataset. The architecture was compared to HA-GAN through a quantitative evaluation, using Frechet Inception Distance (FID) and Maximum Mean Discrepancy (MMD) metrics, and a qualitative evaluation, through a two-alternative forced choice (2AFC) test completed by a pool of 12 resident radiologists, in order to assess the realism of the generated images. Results: CRF-GAN outperformed HA-GAN with lower FID (0.047 vs. 0.061) and MMD (0.084 vs. 0.086) scores, indicating better image fidelity. The 2AFC test showed a significant preference for images generated by CRF-Gan over those generated by HA-GAN with a p-value of 1.93e-05. Additionally, CRF-GAN demonstrated 9.34% lower memory usage at 256 resolution and achieved up to 14.6% faster training speeds, offering substantial computational savings. Discussion: CRF-GAN model successfully generates high-resolution 3D medical images with non-inferior quality to conventional models, while being more memory-efficient and faster. Computational power and time saved can be used to improve the spatial resolution and anatomical accuracy of generated images, which is still a critical factor limiting their direct clinical applicability.


Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray

arXiv.org Artificial Intelligence

Aims. To develop a deep-learning based system for recognition of subclinical atherosclerosis on a plain frontal chest x-ray. Methods and Results. A deep-learning algorithm to predict coronary artery calcium (CAC) score (the AI-CAC model) was developed on 460 chest x-ray (80% training cohort, 20% internal validation cohort) of primary prevention patients (58.4% male, median age 63 [51-74] years) with available paired chest x-ray and chest computed tomography (CT) indicated for any clinical reason and performed within 3 months. The CAC score calculated on chest CT was used as ground truth. The model was validated on an temporally-independent cohort of 90 patients from the same institution (external validation). The diagnostic accuracy of the AI-CAC model assessed by the area under the curve (AUC) was the primary outcome. Overall, median AI-CAC score was 35 (0-388) and 28.9% patients had no AI-CAC. AUC of the AI-CAC model to identify a CAC>0 was 0.90 in the internal validation cohort and 0.77 in the external validation cohort. Sensitivity was consistently above 92% in both cohorts. In the overall cohort (n=540), among patients with AI-CAC=0, a single ASCVD event occurred, after 4.3 years. Patients with AI-CAC>0 had significantly higher Kaplan Meier estimates for ASCVD events (13.5% vs. 3.4%, log-rank=0.013). Conclusion. The AI-CAC model seems to accurately detect subclinical atherosclerosis on chest x-ray with elevated sensitivity, and to predict ASCVD events with elevated negative predictive value. Adoption of the AI-CAC model to refine CV risk stratification or as an opportunistic screening tool requires prospective evaluation.