Goto

Collaborating Authors

 Brun, Luc


Automatic Classification of Sleep Stages from EEG Signals Using Riemannian Metrics and Transformer Networks

arXiv.org Artificial Intelligence

Purpose: In sleep medicine, assessing the evolution of a subject's sleep often involves the costly manual scoring of electroencephalographic (EEG) signals. In recent years, a number of Deep Learning approaches have been proposed to automate this process, mainly by extracting features from said signals. However, despite some promising developments in related problems, such as Brain-Computer Interfaces, analyses of the covariances between brain regions remain underutilized in sleep stage scoring.Methods: Expanding upon our previous work, we investigate the capabilities of SPDTransNet, a Transformer-derived network designed to classify sleep stages from EEG data through timeseries of covariance matrices. Furthermore, we present a novel way of integrating learned signal-wise features into said matrices without sacrificing their Symmetric Definite Positive (SPD) nature.Results: Through comparison with other State-of-the-Art models within a methodology optimized for class-wise performance, we achieve a level of performance at or beyond various State-of-the-Art models, both in single-dataset and - particularly - multi-dataset experiments.Conclusion: In this article, we prove the capabilities of our SPDTransNet model, particularly its adaptability to multi-dataset tasks, within the context of EEG sleep stage scoring - though it could easily be adapted to any classification task involving timeseries of covariance matrices.


When Quantization Affects Confidence of Large Language Models?

arXiv.org Artificial Intelligence

Recent studies introduced effective compression techniques for Large Language Models (LLMs) via post-training quantization or low-bit weight representation. Although quantized weights offer storage efficiency and allow for faster inference, existing works have indicated that quantization might compromise performance and exacerbate biases in LLMs. This study investigates the confidence and calibration of quantized models, considering factors such as language model type and scale as contributors to quantization loss. Firstly, we reveal that quantization with GPTQ to 4-bit results in a decrease in confidence regarding true labels, with varying impacts observed among different language models. Secondly, we observe fluctuations in the impact on confidence across different scales. Finally, we propose an explanation for quantization loss based on confidence levels, indicating that quantization disproportionately affects samples where the full model exhibited low confidence levels in the first place.


Structure-Preserving Transformers for Sequences of SPD Matrices

arXiv.org Artificial Intelligence

In recent years, Transformer-based auto-attention mechanisms have been successfully applied to the analysis of a variety of context-reliant data types, from texts to images and beyond, including data from non-Euclidean geometries. In this paper, we present such a mechanism, designed to classify sequences of Symmetric Positive Definite matrices while preserving their Riemannian geometry throughout the analysis. We apply our method to automatic sleep staging on timeseries of EEG-derived covariance matrices from a standard dataset, obtaining high levels of stage-wise performance.


Maximal Independent Sets for Pooling in Graph Neural Networks

arXiv.org Artificial Intelligence

Convolutional Neural Networks (CNNs) have enabled major advances in image classification through convolution and pooling. In particular, image pooling transforms a connected discrete lattice into a reduced lattice with the same connectivity and allows reduction functions to consider all pixels in an image. However, there is no pooling that satisfies these properties for graphs. In fact, traditional graph pooling methods suffer from at least one of the following drawbacks: Graph disconnection or overconnection, low decimation ratio, and deletion of large parts of graphs. In this paper, we present three pooling methods based on the notion of maximal independent sets that avoid these pitfalls. Our experimental results confirm the relevance of maximal independent set constraints for graph pooling.