Brownlow, Michael
Real-time autonomous robot navigation using VLSI neural networks
Tarassenko, Lionel, Brownlow, Michael, Marshall, Gillian, Tombs, Jan, Murray, Alan
There have been very few demonstrations ofthe application ofVLSI neural networks to real world problems. Yet there are many signal processing, pattern recognition or optimization problems where a large number of competing hypotheses need to be explored in parallel, most often in real time. The massive parallelism of VLSI neural network devices, with one multiplier circuit per synapse, is ideally suited to such problems. In this paper, we present preliminary results from our design for a real time robot navigation system based on VLSI neural network modules.
Real-time autonomous robot navigation using VLSI neural networks
Tarassenko, Lionel, Brownlow, Michael, Marshall, Gillian, Tombs, Jan, Murray, Alan
There have been very few demonstrations ofthe application ofVLSI neural networks to real world problems. Yet there are many signal processing, pattern recognition or optimization problems where a large number of competing hypotheses need to be explored in parallel, most often in real time. The massive parallelism of VLSI neural network devices, with one multiplier circuit per synapse, is ideally suited to such problems. In this paper, we present preliminary results from our design for a real time robot navigation system based on VLSI neural network modules. This is a - Also: RSRE, Great Malvern, Worcester, WR14 3PS 422 Real-time Autonomous Robot Navigation Using VLSI Neural Networks 423 real world problem which has not been fully solved by traditional AI methods; even when partial solutions have been proposed and implemented, these have required vast computational resources, usually remote from the robot and linked to it via an umbilical cord. 2 OVERVIEW The aim of our work is to develop an autonomous vehicle capable of real-time navigation, including obstacle avoidance, in a known indoor environment.
Pulse-Firing Neural Chips for Hundreds of Neurons
Brownlow, Michael, Tarassenko, Lionel, Murray, Alan F., Hamilton, Alister, Han, Il Song, Reekie, H. Martin
Oxford OX1 3PJ Edinburgh EH9 3JL U niv. of Edinburgh ABSTRACT We announce new CMOS synapse circuits using only three and four MOSFETsisynapse. Neural states are asynchronous pulse streams, upon which arithmetic is performed directly. Chips implementing over 100 fully programmable synapses are described and projections to networks of hundreds of neurons are made. 1 OVERVIEW OF PULSE FIRING NEURAL VLSI The inspiration for the use of pulse firing in silicon neural networks is clearly the electrical/chemical pulse mechanism in "real" biological neurons. Neurons fire voltage pulses of a frequency determined by their level of activity but of a constant magnitude (usually 5 Volts) [Murray,1989a]. As indicated in Figure 1, synapses perform arithmetic directly on these asynchronous pulses, to increment or decrement the receiving neuron's activity.
Pulse-Firing Neural Chips for Hundreds of Neurons
Brownlow, Michael, Tarassenko, Lionel, Murray, Alan F., Hamilton, Alister, Han, Il Song, Reekie, H. Martin
U niv. of Edinburgh ABSTRACT We announce new CMOS synapse circuits using only three and four MOSFETsisynapse. Neural states are asynchronous pulse streams, upon which arithmetic is performed directly. Chips implementing over 100 fully programmable synapses are described and projections to networks of hundreds of neurons are made. 1 OVERVIEW OF PULSE FIRING NEURAL VLSI The inspiration for the use of pulse firing in silicon neural networks is clearly the electrical/chemical pulse mechanism in "real" biological neurons. Neurons fire voltage pulses of a frequency determined by their level of activity but of a constant magnitude (usually 5 Volts) [Murray,1989a]. As indicated in Figure 1, synapses perform arithmetic directly on these asynchronous pulses, to increment or decrement the receiving neuron's activity.