Goto

Collaborating Authors

 Broad, Terence


XAIxArts Manifesto: Explainable AI for the Arts

arXiv.org Artificial Intelligence

Explainable AI (XAI) is concerned with how to make AI models more understandable to people. To date these explanations have predominantly been technocentric - mechanistic or productivity oriented. This paper introduces the Explainable AI for the Arts (XAIxArts) manifesto to provoke new ways of thinking about explainability and AI beyond technocentric discourses. Manifestos offer a means to communicate ideas, amplify unheard voices, and foster reflection on practice. To supports the co-creation and revision of the XAIxArts manifesto we combine a World Caf\'e style discussion format with a living manifesto to question four core themes: 1) Empowerment, Inclusion, and Fairness; 2) Valuing Artistic Practice; 3) Hacking and Glitches; and 4) Openness. Through our interactive living manifesto experience we invite participants to actively engage in shaping this XIAxArts vision within the CHI community and beyond.


Active Divergence with Generative Deep Learning -- A Survey and Taxonomy

arXiv.org Artificial Intelligence

Generative deep learning systems offer powerful tools for artefact generation, given their ability to model distributions of data and generate high-fidelity results. In the context of computational creativity, however, a major shortcoming is that they are unable to explicitly diverge from the training data in creative ways and are limited to fitting the target data distribution. To address these limitations, there have been a growing number of approaches for optimising, hacking and rewriting these models in order to actively diverge from the training data. We present a taxonomy and comprehensive survey of the state of the art of active divergence techniques, highlighting the potential for computational creativity researchers to advance these methods and use deep generative models in truly creative systems.


Searching for an (un)stable equilibrium: experiments in training generative models without data

arXiv.org Artificial Intelligence

This paper details a developing artistic practice around an ongoing series of works called (un)stable equilibrium. These works are the product of using modern machine toolkits to train generative models without data, an approach akin to traditional generative art where dynamical systems are explored intuitively for their latent generative possibilities. We discuss some of the guiding principles that have been learnt in the process of experimentation, present details of the implementation of the first series of works and discuss possibilities for future experimentation.