Brewitt, Cillian
Verifiable Goal Recognition for Autonomous Driving with Occlusions
Brewitt, Cillian, Tamborski, Massimiliano, Wang, Cheng, Albrecht, Stefano V.
Goal recognition (GR) involves inferring the goals of other vehicles, such as a certain junction exit, which can enable more accurate prediction of their future behaviour. In autonomous driving, vehicles can encounter many different scenarios and the environment may be partially observable due to occlusions. We present a novel GR method named Goal Recognition with Interpretable Trees under Occlusion (OGRIT). OGRIT uses decision trees learned from vehicle trajectory data to infer the probabilities of a set of generated goals. We demonstrate that OGRIT can handle missing data due to occlusions and make inferences across multiple scenarios using the same learned decision trees, while being computationally fast, accurate, interpretable and verifiable. We also release the inDO, rounDO and OpenDDO datasets of occluded regions used to evaluate OGRIT.
Non-Intrusive Load Monitoring with Fully Convolutional Networks
Brewitt, Cillian, Goddard, Nigel
Non-intrusive load monitoring or energy disaggregation involves estimating the power consumption of individual appliances from measurements of the total power consumption of a home. Deep neural networks have been shown to be effective for energy disaggregation. In this work, we present a deep neural network architecture which achieves state of the art disaggregation performance with substantially improved computational efficiency, reducing model training time by a factor of 32 and prediction time by a factor of 43. This improvement in efficiency could be especially useful for applications where disaggregation must be performed in home on lower power devices, or for research experiments which involve training a large number of models.