Bresina, John L.
Activity Planning for a Lunar Orbital Mission
Bresina, John L. (NASA Ames Research Center)
This article describes a challenging, real-world planning problem within the context of a NASA mission called LADEE (Lunar Atmospheric and Dust Environment Explorer). One key aspect of this approach is the design of the activity planning process based on principles of problem decomposition and planning abstraction levels. The second key aspect is the mixed-initiative system developed for this task, called LASS (LADEE Activity Scheduling System). The primary challenge for LASS was representing and managing the science constraints that were tied to key points in the spacecraft's orbit, given their dynamic nature due to the continually updated orbit determination solution.
Activity Planning for a Lunar Orbital Mission
Bresina, John L. (NASA Ames Research Center)
This article describes a challenging, real-world planning problem within the context of a NASA mission called LADEE (Lunar Atmospheric and Dust Environment Explorer). I present the approach taken to reduce the complexity of the activity-planning task in order to perform it effectively under the time pressures imposed by the mission requirements. One key aspect of this approach is the design of the activity planning process based on principles of problem decomposition and planning abstraction levels. The second key aspect is the mixed-initiative system developed for this task, called LASS (LADEE Activity Scheduling System). The primary challenge for LASS was representing and managing the science constraints that were tied to key points in the spacecraft’s orbit, given their dynamic nature due to the continually updated orbit determination solution.
Activity Planning for a Lunar Orbital Mission
Bresina, John L. (NASA Ames Research Center)
This paper describes a challenging, real-world planning problem within the context of a NASA mission called LADEE (Lunar Atmospheric Dust Environment Explorer). We present the approach taken to reduce the complexity of the activity planning task in order to effectively perform it within the time pressures imposed by the mission requirements. One key aspect of this approach is the design of the activity planning process based on principles of problem decomposition and planning abstraction levels. The second key aspect is the mixed-initiative system developed for this task, called LASS (LADEE Activity Scheduling System). The primary challenge for LASS was representing and managing the science constraints that were tied to key points in the spacecraft’s orbit, given their dynamic nature due to the continually updated orbit determination solution.
Mixed-Initiative Planning in Space Mission Operations
Bresina, John L., Morris, Paul H.
MAPGEN was deployed as a mission-critical component of the ground operations system for the Mars Exploration Rover mission. Each day, the ground-planning personnel employ MAPGEN to collaboratively plan the activities of the "Spirit and "Opportunity rovers, with the objective of achieving as much science as possible while ensuring rover safety and keeping within the limitations of the rovers' resources. The Mars Exploration Rover mission has now been operating for more than two years, and MAPGEN continues to be employed for activity plan generation for the Spirit and Opportunity rovers. These lessons have spawned new research in mixed-initiative planning and have influenced the design of a new ground operations system, called M-SLICE, that is baselined for the Mars Science Laboratory mission.
Mixed-Initiative Planning in Space Mission Operations
Bresina, John L., Morris, Paul H.
The MAPGEN system represents a successful mission infusion of mixed-initiative planning technology. MAPGEN was deployed as a mission-critical component of the ground operations system for the Mars Exploration Rover mission. Each day, the ground-planning personnel employ MAPGEN to collaboratively plan the activities of the "Spirit and "Opportunity rovers, with the objective of achieving as much science as possible while ensuring rover safety and keeping within the limitations of the rovers' resources. The Mars Exploration Rover mission has now been operating for more than two years, and MAPGEN continues to be employed for activity plan generation for the Spirit and Opportunity rovers. During the multiyear deployment effort and subsequent mission operations experience, we have learned valuable lessons regarding application of mixed-initiative planning technology to mission operations. These lessons have spawned new research in mixed-initiative planning and have influenced the design of a new ground operations system, called M-SLICE, that is baselined for the Mars Science Laboratory mission. In this article, we discuss the mixed-initiative aspects of the MAPGEN system, focusing on the task, control, and awareness issues.