Brendan O'Donoghue
Hamiltonian descent for composite objectives
Brendan O'Donoghue, Chris J. Maddison
Hamiltonian descent for composite objectives
Brendan O'Donoghue, Chris J. Maddison
In optimization the duality gap between the primal and the dual problems is a measure of the suboptimality of any primal-dual point. In classical mechanics the equations of motion of a system can be derived from the Hamiltonian function, which is a quantity that describes the total energy of the system. In this paper we consider a convex optimization problem consisting of the sum of two convex functions, sometimes referred to as a composite objective, and we identify the duality gap to be the'energy' of the system. In the Hamiltonian formalism the energy is conserved, so we add a contractive term to the standard equations of motion so that this energy decreases linearly (i.e., geometrically) with time. This yields a continuous-time ordinary differential equation (ODE) in the primal and dual variables which converges to zero duality gap, i.e., optimality.