Braziunas, Darius
Low-Rank Linear Cold-Start Recommendation from Social Data
Sedhain, Suvash (Australian National University) | Menon, Aditya Krishna (DATA61 and Australian National University) | Sanner, Scott (University of Toronto) | Xie, Lexing (Australian National University and DATA61) | Braziunas, Darius (Rakuten Kobo Inc.)
The cold-start problem involves recommendation of content to new users of a system, for whom there is no historical preference information available. This proves a challenge for collaborative filtering algorithms that inherently rely on such information. Recent work has shown that social metadata, such as users' friend groups and page likes, can strongly mitigate the problem. However, such approaches either lack an interpretation as optimising some principled objective, involve iterative non-convex optimisation with limited scalability, or require tuning several hyperparameters. In this paper, we first show how three popular cold-start models are special cases of a linear content-based model, with implicit constraints on the weights. Leveraging this insight, we propose Loco, a new model for cold-start recommendation based on three ingredients: (a) linear regression to learn an optimal weighting of social signals for preferences, (b) a low-rank parametrisation of the weights to overcome the high dimensionality common in social data, and (c) scalable learning of such low-rank weights using randomised SVD. Experiments on four real-world datasets show that Loco yields significant improvements over state-of-the-art cold-start recommenders that exploit high-dimensional social network metadata.
On the Effectiveness of Linear Models for One-Class Collaborative Filtering
Sedhain, Suvash (Australian National University) | Menon, Aditya Krishna (Australian National University and NICTA) | Sanner, Scott (Oregon State University and Australian National University) | Braziunas, Darius (Rakuten Kobo Inc)
In many personalised recommendation problems, there are examples of items users prefer or like, but no examples of items they dislike. A state-of-the-art method for such implicit feedback, or one-class collaborative filtering (OC-CF), problems is SLIM, which makes recommendations based on a learned item-item similarity matrix. While SLIM has been shown to perform well on implicit feedback tasks, we argue that it is hindered by two limitations: first, it does not produce user-personalised predictions, which hampers recommendation performance; second, it involves solving a constrained optimisation problem, which impedes fast training. In this paper, we propose LRec, a variant of SLIM that overcomes these limitations without sacrificing any of SLIM's strengths.At its core, LRec employs linear logistic regression; despite this simplicity, LRec consistently and significantly outperforms all existing methods on a range of datasets. Our results thus illustrate that the OC-CF problem can be effectively tackled via linear classification models.
Reports of the AAAI 2014 Conference Workshops
Albrecht, Stefano V. (University of Edinburgh) | Barreto, Andrรฉ M. S. (Brazilian National Laboratory for Scientific Computing) | Braziunas, Darius (Kobo Inc.) | Buckeridge, David L. (McGill University) | Cuayรกhuitl, Heriberto (Heriot-Watt University) | Dethlefs, Nina (Heriot-Watt University) | Endres, Markus (University of Augsburg) | Farahmand, Amir-massoud (Carnegie Mellon University) | Fox, Mark (University of Toronto) | Frommberger, Lutz (University of Bremen) | Ganzfried, Sam (Carnegie Mellon University) | Gil, Yolanda (University of Southern California) | Guillet, Sรฉbastien (Universitรฉ du Quรฉbec ร Chicoutimi) | Hunter, Lawrence E. (University of Colorado School of Medicine) | Jhala, Arnav (University of California Santa Cruz) | Kersting, Kristian (Technical University of Dortmund) | Konidaris, George (Massachusetts Institute of Technology) | Lecue, Freddy (IBM Research) | McIlraith, Sheila (University of Toronto) | Natarajan, Sriraam (Indiana University) | Noorian, Zeinab (University of Saskatchewan) | Poole, David (University of British Columbia) | Ronfard, Rรฉmi (University of Grenoble) | Saffiotti, Alessandro (Orebro University) | Shaban-Nejad, Arash (McGill University) | Srivastava, Biplav (IBM Research) | Tesauro, Gerald (IBM Research) | Uceda-Sosa, Rosario (IBM Research) | Broeck, Guy Van den (Katholieke Universiteit Leuven) | Otterlo, Martijn van (Radboud University Nijmegen) | Wallace, Byron C. (University of Texas) | Weng, Paul (Pierre and Marie Curie University) | Wiens, Jenna (University of Michigan) | Zhang, Jie (Nanyang Technological University)
The AAAI-14 Workshop program was held Sunday and Monday, July 27โ28, 2012, at the Quรฉbec City Convention Centre in Quรฉbec, Canada. The AAAI-14 workshop program included fifteen workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Robotics; Artificial Intelligence Applied to Assistive Technologies and Smart Environments; Cognitive Computing for Augmented Human Intelligence; Computer Poker and Imperfect Information; Discovery Informatics; Incentives and Trust in Electronic Communities; Intelligent Cinematography and Editing; Machine Learning for Interactive Systems: Bridging the Gap between Perception, Action and Communication; Modern Artificial Intelligence for Health Analytics; Multiagent Interaction without Prior Coordination; Multidisciplinary Workshop on Advances in Preference Handling; Semantic Cities -- Beyond Open Data to Models, Standards and Reasoning; Sequential Decision Making with Big Data; Statistical Relational AI; and The World Wide Web and Public Health Intelligence. This article presents short summaries of those events.
Reports of the AAAI 2014 Conference Workshops
Albrecht, Stefano V. (University of Edinburgh) | Barreto, Andrรฉ M. S. (Brazilian National Laboratory for Scientific Computing) | Braziunas, Darius (Kobo Inc.) | Buckeridge, David L. (McGill University) | Cuayรกhuitl, Heriberto (Heriot-Watt University) | Dethlefs, Nina (Heriot-Watt University) | Endres, Markus (University of Augsburg) | Farahmand, Amir-massoud (Carnegie Mellon University) | Fox, Mark (University of Toronto) | Frommberger, Lutz (University of Bremen) | Ganzfried, Sam (Carnegie Mellon University) | Gil, Yolanda (University of Southern California) | Guillet, Sรฉbastien (Universitรฉ du Quรฉbec ร Chicoutimi) | Hunter, Lawrence E. (University of Colorado School of Medicine) | Jhala, Arnav (University of California Santa Cruz) | Kersting, Kristian (Technical University of Dortmund) | Konidaris, George (Massachusetts Institute of Technology) | Lecue, Freddy (IBM Research) | McIlraith, Sheila (University of Toronto) | Natarajan, Sriraam (Indiana University) | Noorian, Zeinab (University of Saskatchewan) | Poole, David (University of British Columbia) | Ronfard, Rรฉmi (University of Grenoble) | Saffiotti, Alessandro (Orebro University) | Shaban-Nejad, Arash (McGill University) | Srivastava, Biplav (IBM Research) | Tesauro, Gerald (IBM Research) | Uceda-Sosa, Rosario (IBM Research) | Broeck, Guy Van den (Katholieke Universiteit Leuven) | Otterlo, Martijn van (Radboud University Nijmegen) | Wallace, Byron C. (University of Texas) | Weng, Paul (Pierre and Marie Curie University) | Wiens, Jenna (University of Michigan) | Zhang, Jie (Nanyang Technological University)
The AAAI-14 Workshop program was held Sunday and Monday, July 27โ28, 2012, at the Quรฉbec City Convention Centre in Quรฉbec, Canada. Canada. The AAAI-14 workshop program included fifteen workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Robotics; Artificial Intelligence Applied to Assistive Technologies and Smart Environments; Cognitive Computing for Augmented Human Intelligence; Computer Poker and Imperfect Information; Discovery Informatics; Incentives and Trust in Electronic Communities; Intelligent Cinematography and Editing; Machine Learning for Interactive Systems: Bridging the Gap between Perception, Action and Communication; Modern Artificial Intelligence for Health Analytics; Multiagent Interaction without Prior Coordination; Multidisciplinary Workshop on Advances in Preference Handling; Semantic Cities โ Beyond Open Data to Models, Standards and Reasoning; Sequential Decision Making with Big Data; Statistical Relational AI; and The World Wide Web and Public Health Intelligence. This article presents short summaries of those events.
Preface
Braziunas, Darius (Kobo Inc.) | Endres, Markus (University of Augsburg) | Venable, K. Brent (Tulane University) | Weng, Paul (Universitรฉ Pierre et Marie Curi) | Xia, Lirong (Rensselaer Polytechnic Institute)
Nearly all areas of artificial intelligence deal with choice situations and can thus benefit from computational methods for handling preferences. Moreover, social choice methods are also of key importance in computational domains such as multiagent systems. This broadened scope of preferences leads to new types of preference models, new problems for applying preference structures, and new kinds of benefits. Preferences are inherently a multi-disciplinary topic, of interest to economists, computer scientists, operations researchers, math- ematicians and more. The workshop on Advances in Preferences Handling promotes this broadened scope of preference handling. The workshop seeks to improve the overall understanding of the benefits of preferences for those tasks. Another important goal is to provide cross-fertilization between different fields.
Minimax regret based elicitation of generalized additive utilities
Braziunas, Darius, Boutilier, Craig
We describe the semantic foundations for elicitation of generalized additively independent (GAI) utilities using the minimax regret criterion, and propose several new query types and strategies for this purpose. Computational feasibility is obtained by exploiting the local GAI structure in the model. Our results provide a practical approach for implementing preference-based constrained configuration optimization as well as effective search in multiattribute product databases.
Elicitation of Factored Utilities
Braziunas, Darius (University of Toronto) | Boutilier, Craig (University of Toronto)
The effective tailoring of decisions to the needs and desires of specific users requires automated mechanisms for preference assessment. We provide a brief overview of recent direct preference elicitation methods: these methods ask users to answer (ideally, a small number of) queries regarding their preferences and use this information to recommend a feasible decision that would be (approximately) optimal given those preferences. We argue for the importance of assessing numerical utilities rather than qualitative preferences, and survey several utility elicitation techniques from artificial intelligence, operations research, and conjoint analysis.