Braun, Sebastian
Gaussian Flow Bridges for Audio Domain Transfer with Unpaired Data
Moliner, Eloi, Braun, Sebastian, Gamper, Hannes
Audio domain transfer is the process of modifying audio signals to match characteristics of a different domain, while retaining the original content. This paper investigates the potential of Gaussian Flow Bridges, an emerging approach in generative modeling, for this problem. The presented framework addresses the transport problem across different distributions of audio signals through the implementation of a series of two deterministic probability flows. The proposed framework facilitates manipulation of the target distribution properties through a continuous control variable, which defines a certain aspect of the target domain. Notably, this approach does not rely on paired examples for training. To address identified challenges on maintaining the speech content consistent, we recommend a training strategy that incorporates chunk-based minibatch Optimal Transport couplings of data samples and noise. Comparing our unsupervised method with established baselines, we find competitive performance in tasks of reverberation and distortion manipulation. Despite encoutering limitations, the intriguing results obtained in this study underscore potential for further exploration.
ICASSP 2024 Speech Signal Improvement Challenge
Ristea, Nicolae Catalin, Saabas, Ando, Cutler, Ross, Naderi, Babak, Braun, Sebastian, Branets, Solomiya
The ICASSP 2024 Speech Signal Improvement Grand Challenge is intended to stimulate research in the area of improving the speech signal quality in communication systems. This marks our second challenge, building upon the success from the previous ICASSP 2023 Grand Challenge. We enhance the competition by introducing a dataset synthesizer, enabling all participating teams to start at a higher baseline, an objective metric for our extended P.804 tests, transcripts for the 2023 test set, and we add Word Accuracy (WAcc) as a metric. We evaluate a total of 13 systems in the real-time track and 11 systems in the non-real-time track using both subjective P.804 and objective Word Accuracy metrics.
CMMD: Contrastive Multi-Modal Diffusion for Video-Audio Conditional Modeling
Yang, Ruihan, Gamper, Hannes, Braun, Sebastian
We introduce a multi-modal diffusion model tailored for the bi-directional conditional generation of video and audio. Recognizing the importance of accurate alignment between video and audio events in multi-modal generation tasks, we propose a joint contrastive training loss to enhance the synchronization between visual and auditory occurrences. Our research methodology involves conducting comprehensive experiments on multiple datasets to thoroughly evaluate the efficacy of our proposed model. The assessment of generation quality and alignment performance is carried out from various angles, encompassing both objective and subjective metrics. Our findings demonstrate that the proposed model outperforms the baseline, substantiating its effectiveness and efficiency. Notably, the incorporation of the contrastive loss results in improvements in audio-visual alignment, particularly in the high-correlation video-to-audio generation task. These results indicate the potential of our proposed model as a robust solution for improving the quality and alignment of multi-modal generation, thereby contributing to the advancement of video and audio conditional generation systems.
DBNET: DOA-driven beamforming network for end-to-end farfield sound source separation
Aroudi, Ali, Braun, Sebastian
Many deep learning techniques are available to perform source separation and reduce background noise. However, designing an end-to-end multi-channel source separation method using deep learning and conventional acoustic signal processing techniques still remains challenging. In this paper we propose a direction-of-arrival-driven beamforming network (DBnet) consisting of direction-of-arrival (DOA) estimation and beamforming layers for end-to-end source separation. We propose to train DBnet using loss functions that are solely based on the distances between the separated speech signals and the target speech signals, without a need for the ground-truth DOAs of speakers. To improve the source separation performance, we also propose end-to-end extensions of DBnet which incorporate post masking networks. We evaluate the proposed DBnet and its extensions on a very challenging dataset, targeting realistic far-field sound source separation in reverberant and noisy environments. The experimental results show that the proposed extended DBnet using a convolutional-recurrent post masking network outperforms state-of-the-art source separation methods.