Goto

Collaborating Authors

 Brantingham, P. Jeffrey


Narrative Analysis of True Crime Podcasts With Knowledge Graph-Augmented Large Language Models

arXiv.org Artificial Intelligence

Narrative data spans all disciplines and provides a coherent model of the world to the reader or viewer. Recent advancement in machine learning and Large Language Models (LLMs) have enable great strides in analyzing natural language. However, Large language models (LLMs) still struggle with complex narrative arcs as well as narratives containing conflicting information. Recent work indicates LLMs augmented with external knowledge bases can improve the accuracy and interpretability of the resulting models. In this work, we analyze the effectiveness of applying knowledge graphs (KGs) in understanding true-crime podcast data from both classical Natural Language Processing (NLP) and LLM approaches. We directly compare KG-augmented LLMs (KGLLMs) with classical methods for KG construction, topic modeling, and sentiment analysis. Additionally, the KGLLM allows us to query the knowledge base in natural language and test its ability to factually answer questions. We examine the robustness of the model to adversarial prompting in order to test the model's ability to deal with conflicting information. Finally, we apply classical methods to understand more subtle aspects of the text such as the use of hearsay and sentiment in narrative construction and propose future directions. Our results indicate that KGLLMs outperform LLMs on a variety of metrics, are more robust to adversarial prompts, and are more capable of summarizing the text into topics.


GenEARL: A Training-Free Generative Framework for Multimodal Event Argument Role Labeling

arXiv.org Artificial Intelligence

Multimodal event argument role labeling (EARL), a task that assigns a role for each event participant (object) in an image is a complex challenge. It requires reasoning over the entire image, the depicted event, and the interactions between various objects participating in the event. Existing models heavily rely on high-quality event-annotated training data to understand the event semantics and structures, and they fail to generalize to new event types and domains. In this paper, we propose GenEARL, a training-free generative framework that harness the power of the modern generative models to understand event task descriptions given image contexts to perform the EARL task. Specifically, GenEARL comprises two stages of generative prompting with a frozen vision-language model (VLM) and a frozen large language model (LLM). First, a generative VLM learns the semantics of the event argument roles and generates event-centric object descriptions based on the image. Subsequently, a LLM is prompted with the generated object descriptions with a predefined template for EARL (i.e., assign an object with an event argument role). We show that GenEARL outperforms the contrastive pretraining (CLIP) baseline by 9.4% and 14.2% accuracy for zero-shot EARL on the M2E2 and SwiG datasets, respectively. In addition, we outperform CLIP-Event by 22% precision on M2E2 dataset. The framework also allows flexible adaptation and generalization to unseen domains.


Improving Event Definition Following For Zero-Shot Event Detection

arXiv.org Artificial Intelligence

Existing approaches on zero-shot event detection usually train models on datasets annotated with known event types, and prompt them with unseen event definitions. These approaches yield sporadic successes, yet generally fall short of expectations. In this work, we aim to improve zero-shot event detection by training models to better follow event definitions. We hypothesize that a diverse set of event types and definitions are the key for models to learn to follow event definitions while existing event extraction datasets focus on annotating many high-quality examples for a few event types. To verify our hypothesis, we construct an automatically generated Diverse Event Definition (DivED) dataset and conduct comparative studies. Our experiments reveal that a large number of event types (200) and diverse event definitions can significantly boost event extraction performance; on the other hand, the performance does not scale with over ten examples per event type. Beyond scaling, we incorporate event ontology information and hard-negative samples during training, further boosting the performance. Based on these findings, we fine-tuned a LLaMA-2-7B model on our DivED dataset, yielding performance that surpasses SOTA large language models like GPT-3.5 across three open benchmarks on zero-shot event detection.


STAR: Improving Low-Resource Information Extraction by Structure-to-Text Data Generation with Large Language Models

arXiv.org Artificial Intelligence

Information extraction tasks such as event extraction require an in-depth understanding of the output structure and sub-task dependencies. They heavily rely on task-specific training data in the form of (passage, target structure) pairs to obtain reasonable performance. However, obtaining such data through human annotation is costly, leading to a pressing need for low-resource information extraction approaches that require minimal human labeling for real-world applications. Fine-tuning supervised models with synthesized training data would be a generalizable method, but the existing data generation methods either still rely on large-scale ground-truth data or cannot be applied to complicated IE tasks due to their poor performance. To address these challenges, we propose STAR, a data generation method that leverages Large Language Models (LLMs) to synthesize data instances given limited seed demonstrations, thereby boosting low-resource information extraction performance. Our approach involves generating target structures (Y) followed by generating passages (X), all accomplished with the aid of LLMs. We design fine-grained step-by-step instructions to obtain the initial data instances. We further reduce errors and improve data quality through self-reflection error identification and self-refinement with iterative revision. Our experiments show that the data generated by STAR significantly improves the performance of low-resource event extraction and relation extraction tasks, even surpassing the effectiveness of human-curated data. Human assessment of the data quality shows STAR-generated data exhibits higher passage quality and better align with the task definitions compared with the human-curated data.


Professional Basketball Player Behavior Synthesis via Planning with Diffusion

arXiv.org Artificial Intelligence

Dynamically planning in multi-agent systems has been explored to improve decision-making in various domains. Professional basketball serves as a compelling example of a dynamic spatio-temporal game, encompassing both concealed strategic policies and decision-making. However, processing the diverse on-court signals and navigating the vast space of potential actions and outcomes makes it difficult for existing approaches to swiftly identify optimal strategies in response to evolving circumstances. In this study, we first formulate the sequential decision-making process as a conditional trajectory generation process. We further introduce PLAYBEST (PLAYer BEhavior SynThesis), a method for enhancing player decision-making. We extend the state-of-the-art generative model, diffusion probabilistic model, to learn challenging multi-agent environmental dynamics from historical National Basketball Association (NBA) player motion tracking data. To incorporate data-driven strategies, an auxiliary value function is trained using the play-by-play data with corresponding rewards acting as the plan guidance. To accomplish reward-guided trajectory generation, conditional sampling is introduced to condition the diffusion model on the value function and conduct classifier-guided sampling. We validate the effectiveness of PLAYBEST via comprehensive simulation studies from real-world data, contrasting the generated trajectories and play strategies with those employed by professional basketball teams. Our results reveal that the model excels at generating high-quality basketball trajectories that yield efficient plays, surpassing conventional planning techniques in terms of adaptability, flexibility, and overall performance. Moreover, the synthesized play strategies exhibit a remarkable alignment with professional tactics, highlighting the model's capacity to capture the intricate dynamics of basketball games.


Semi-Supervised First-Person Activity Recognition in Body-Worn Video

arXiv.org Machine Learning

Body-worn cameras are now commonly used for logging daily life, sports, and law enforcement activities, creating a large volume of archived footage. This paper studies the problem of classifying frames of footage according to the activity of the camera-wearer with an emphasis on application to real-world police body-worn video. Real-world datasets pose a different set of challenges from existing egocentric vision datasets: the amount of footage of different activities is unbalanced, the data contains personally identifiable information, and in practice it is difficult to provide substantial training footage for a supervised approach. We address these challenges by extracting features based exclusively on motion information then segmenting the video footage using a semi-supervised classification algorithm. On publicly available datasets, our method achieves results comparable to, if not better than, supervised and/or deep learning methods using a fraction of the training data. It also shows promising results on real-world police body-worn video.


Multivariate Spatiotemporal Hawkes Processes and Network Reconstruction

arXiv.org Machine Learning

There is often latent network structure in spatial and temporal data and the tools of network analysis can yield fascinating insights into such data. In this paper, we develop a nonparametric method for network reconstruction from spatiotemporal data sets using multivariate Hawkes processes. In contrast to prior work on network reconstruction with point-process models, which has often focused on exclusively temporal information, our approach uses both temporal and spatial information and does not assume a specific parametric form of network dynamics. This leads to an effective way of recovering an underlying network. We illustrate our approach using both synthetic networks and networks constructed from real-world data sets (a location-based social media network, a narrative of crime events, and violent gang crimes). Our results demonstrate that, in comparison to using only temporal data, our spatiotemporal approach yields improved network reconstruction, providing a basis for meaningful subsequent analysis --- such as community structure and motif analysis --- of the reconstructed networks.


Graph-Based Deep Modeling and Real Time Forecasting of Sparse Spatio-Temporal Data

arXiv.org Machine Learning

We present a generic framework for spatio-temporal (ST) data modeling, analysis, and forecasting, with a special focus on data that is sparse in both space and time. Our multi-scaled framework is a seamless coupling of two major components: a self-exciting point process that models the macroscale statistical behaviors of the ST data and a graph structured recurrent neural network (GSRNN) to discover the microscale patterns of the ST data on the inferred graph. This novel deep neural network (DNN) incorporates the real time interactions of the graph nodes to enable more accurate real time forecasting. The effectiveness of our method is demonstrated on both crime and traffic forecasting.


Deep Learning for Real-Time Crime Forecasting and its Ternarization

arXiv.org Machine Learning

Real-time crime forecasting is important. However, accurate prediction of when and where the next crime will happen is difficult. No known physical model provides a reasonable approximation to such a complex system. Historical crime data are sparse in both space and time and the signal of interests is weak. In this work, we first present a proper representation of crime data. We then adapt the spatial temporal residual network on the well represented data to predict the distribution of crime in Los Angeles at the scale of hours in neighborhood-sized parcels. These experiments as well as comparisons with several existing approaches to prediction demonstrate the superiority of the proposed model in terms of accuracy. Finally, we present a ternarization technique to address the resource consumption issue for its deployment in real world. This work is an extension of our short conference proceeding paper [Wang et al, Arxiv 1707.03340].


Latent Self-Exciting Point Process Model for Spatial-Temporal Networks

arXiv.org Machine Learning

We propose a latent self-exciting point process model that describes geographically distributed interactions between pairs of entities. In contrast to most existing approaches that assume fully observable interactions, here we consider a scenario where certain interaction events lack information about participants. Instead, this information needs to be inferred from the available observations. We develop an efficient approximate algorithm based on variational expectation-maximization to infer unknown participants in an event given the location and the time of the event. We validate the model on synthetic as well as real-world data, and obtain very promising results on the identity-inference task. We also use our model to predict the timing and participants of future events, and demonstrate that it compares favorably with baseline approaches.