Bradley, David M.
Convex Coding
Bradley, David M., Bagnell, J Andrew
Inspired by recent work on convex formulations of clustering (Lashkari & Golland, 2008; Nowozin & Bakir, 2008) we investigate a new formulation of the Sparse Coding Problem (Olshausen & Field, 1997). In sparse coding we attempt to simultaneously represent a sequence of data-vectors sparsely (i.e. sparse approximation (Tropp et al., 2006)) in terms of a 'code' defined by a set of basis elements, while also finding a code that enables such an approximation. As existing alternating optimization procedures for sparse coding are theoretically prone to severe local minima problems, we propose a convex relaxation of the sparse coding problem and derive a boosting-style algorithm, that (Nowozin & Bakir, 2008) serves as a convex 'master problem' which calls a (potentially non-convex) sub-problem to identify the next code element to add. Finally, we demonstrate the properties of our boosted coding algorithm on an image denoising task.
Differentiable Sparse Coding
Bagnell, J. A., Bradley, David M.
We show how smoother priors can preserve the benefits of these sparse priors while adding stability to the Maximum A-Posteriori (MAP) estimate that makes it more useful for prediction problems. Additionally, we show how to calculate the derivative of the MAP estimate efficiently withimplicit differentiation. One prior that can be differentiated this way is KL-regularization. We demonstrate its effectiveness on a wide variety of applications, andfind that online optimization of the parameters of the KL-regularized model can significantly improve prediction performance.
Boosting Structured Prediction for Imitation Learning
Bagnell, J. A., Chestnutt, Joel, Bradley, David M., Ratliff, Nathan D.
The Maximum Margin Planning (MMP) (Ratliff et al., 2006) algorithm solves imitation learning problems by learning linear mappings from features to cost functions in a planning domain. The learned policy is the result of minimum-cost planning using these cost functions. These mappings are chosen so that example policies (or trajectories) given by a teacher appear to be lower cost (with a lossscaled margin) than any other policy for a given planning domain.
Boosting Structured Prediction for Imitation Learning
Bagnell, J. A., Chestnutt, Joel, Bradley, David M., Ratliff, Nathan D.
The Maximum Margin Planning (MMP) (Ratliff et al., 2006) algorithm solves imitation learning problems by learning linear mappings from features to cost functions in a planning domain. The learned policy is the result of minimum-cost planning using these cost functions. These mappings are chosen so that example policies (or trajectories) given by a teacher appear to be lower cost (with a lossscaled margin)than any other policy for a given planning domain. We provide a novel approach, MMPBOOST, based on the functional gradient descent view of boosting (Mason et al., 1999; Friedman, 1999a) that extends MMP by "boosting" in new features. This approach uses simple binary classification or regression to improve performance of MMP imitation learning, and naturally extends to the class of structured maximum margin prediction problems.