Goto

Collaborating Authors

 Bouritsas, Giorgos


Scale Equivariant Graph Metanetworks

arXiv.org Artificial Intelligence

This paper pertains to an emerging machine learning paradigm: learning higher-order functions, i.e. functions whose inputs are functions themselves, $\textit{particularly when these inputs are Neural Networks (NNs)}$. With the growing interest in architectures that process NNs, a recurring design principle has permeated the field: adhering to the permutation symmetries arising from the connectionist structure of NNs. $\textit{However, are these the sole symmetries present in NN parameterizations}$? Zooming into most practical activation functions (e.g. sine, ReLU, tanh) answers this question negatively and gives rise to intriguing new symmetries, which we collectively refer to as $\textit{scaling symmetries}$, that is, non-zero scalar multiplications and divisions of weights and biases. In this work, we propose $\textit{Scale Equivariant Graph MetaNetworks - ScaleGMNs}$, a framework that adapts the Graph Metanetwork (message-passing) paradigm by incorporating scaling symmetries and thus rendering neuron and edge representations equivariant to valid scalings. We introduce novel building blocks, of independent technical interest, that allow for equivariance or invariance with respect to individual scalar multipliers or their product and use them in all components of ScaleGMN. Furthermore, we prove that, under certain expressivity conditions, ScaleGMN can simulate the forward and backward pass of any input feedforward neural network. Experimental results demonstrate that our method advances the state-of-the-art performance for several datasets and activation functions, highlighting the power of scaling symmetries as an inductive bias for NN processing.


Bridging Mini-Batch and Asymptotic Analysis in Contrastive Learning: From InfoNCE to Kernel-Based Losses

arXiv.org Artificial Intelligence

What do different contrastive learning (CL) losses actually optimize for? Although multiple CL methods have demonstrated remarkable representation learning capabilities, the differences in their inner workings remain largely opaque. In this work, we analyse several CL families and prove that, under certain conditions, they admit the same minimisers when optimizing either their batch-level objectives or their expectations asymptotically. In both cases, an intimate connection with the hyperspherical energy minimisation (HEM) problem resurfaces. Drawing inspiration from this, we introduce a novel CL objective, coined Decoupled Hyperspherical Energy Loss (DHEL). DHEL simplifies the problem by decoupling the target hyperspherical energy from the alignment of positive examples while preserving the same theoretical guarantees. Going one step further, we show the same results hold for another relevant CL family, namely kernel contrastive learning (KCL), with the additional advantage of the expected loss being independent of batch size, thus identifying the minimisers in the non-asymptotic regime. Empirical results demonstrate improved downstream performance and robustness across combinations of different batch sizes and hyperparameters and reduced dimensionality collapse, on several computer vision datasets.


Partition and Code: learning how to compress graphs

arXiv.org Machine Learning

Can we use machine learning to compress graph data? The absence of ordering in graphs poses a significant challenge to conventional compression algorithms, limiting their attainable gains as well as their ability to discover relevant patterns. On the other hand, most graph compression approaches rely on domain-dependent handcrafted representations and cannot adapt to different underlying graph distributions. This work aims to establish the necessary principles a lossless graph compression method should follow to approach the entropy storage lower bound. Instead of making rigid assumptions about the graph distribution, we formulate the compressor as a probabilistic model that can be learned from data and generalise to unseen instances. Our "Partition and Code" framework entails three steps: first, a partitioning algorithm decomposes the graph into elementary structures, then these are mapped to the elements of a small dictionary on which we learn a probability distribution, and finally, an entropy encoder translates the representation into bits. All three steps are parametric and can be trained with gradient descent. We theoretically compare the compression quality of several graph encodings and prove, under mild conditions, a total ordering of their expected description lengths. Moreover, we show that, under the same conditions, PnC achieves compression gains w.r.t. the baselines that grow either linearly or quadratically with the number of vertices. Our algorithms are quantitatively evaluated on diverse real-world networks obtaining significant performance improvements with respect to different families of non-parametric and parametric graph compressors.


Deep Polynomial Neural Networks

arXiv.org Machine Learning

Deep Convolutional Neural Networks (DCNNs) are currently the method of choice both for generative, as well as for discriminative learning in computer vision and machine learning. The success of DCNNs can be attributed to the careful selection of their building blocks (e.g., residual blocks, rectifiers, sophisticated normalization schemes, to mention but a few). In this paper, we propose $\Pi$-Nets, a new class of DCNNs. $\Pi$-Nets are polynomial neural networks, i.e., the output is a high-order polynomial of the input. The unknown parameters, which are naturally represented by high-order tensors, are estimated through a collective tensor factorization with factors sharing. We introduce three tensor decompositions that significantly reduce the number of parameters and show how they can be efficiently implemented by hierarchical neural networks. We empirically demonstrate that $\Pi$-Nets are very expressive and they even produce good results without the use of non-linear activation functions in a large battery of tasks and signals, i.e., images, graphs, and audio. When used in conjunction with activation functions, $\Pi$-Nets produce state-of-the-art results in three challenging tasks, i.e. image generation, face verification and 3D mesh representation learning.


Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting

arXiv.org Machine Learning

While Graph Neural Networks (GNNs) have achieved remarkable results in a variety of applications, recent studies exposed important shortcomings in their ability to capture the structure of the underlying graph. It has been shown that the expressive power of standard GNNs is bounded by the Weisfeiler-Lehman (WL) graph isomorphism test, from which they inherit proven limitations such as the inability to detect and count graph substructures. On the other hand, there is significant empirical evidence, e.g. in network science and bioinformatics, that substructures are often informative for downstream tasks, suggesting that it is desirable to design GNNs capable of leveraging this important source of information. To this end, we propose a novel topologically-aware message passing scheme based on subgraph isomorphism counting. We show that our architecture allows incorporating domain-specific inductive biases and that it is strictly more expressive than the WL test. Importantly, in contrast to recent works on the expressivity of GNNs, we do not attempt to adhere to the WL hierarchy; this allows us to retain multiple attractive properties of standard GNNs such as locality and linear complexity, while being able to disambiguate even hard instances of graph isomorphism. We extensively evaluate our method on graph classification and regression tasks and show state-of-the-art results on multiple datasets including molecular graphs and social networks.


Automated Real-time Anomaly Detection in Human Trajectories using Sequence to Sequence Networks

arXiv.org Artificial Intelligence

Detection of anomalous trajectories is an important problem with potential applications to various domains, such as video surveillance, risk assessment, vessel monitoring and high-energy physics. Modeling the distribution of trajectories with statistical approaches has been a challenging task due to the fact that such time series are usually non stationary and highly dimensional. However, modern machine learning techniques provide robust approaches for data-driven modeling and critical information extraction. In this paper, we propose a Sequence to Sequence architecture for real-time detection of anomalies in human trajectories, in the context of risk-based security. Our detection scheme is tested on a synthetic dataset of diverse and realistic trajectories generated by the ISL iCrowd simulator. The experimental results indicate that our scheme accurately detects motion patterns that deviate from normal behaviors and is promising for future real-world applications.


Neural 3D Morphable Models: Spiral Convolutional Networks for 3D Shape Representation Learning and Generation

arXiv.org Artificial Intelligence

Generative models for 3D geometric data arise in many important applications in 3D computer vision and graphics. In this paper, we focus on 3D deformable shapes that share a common topological structure, such as human faces and bodies. Morphable Models were among the first attempts to create compact representations for such shapes; despite their effectiveness and simplicity, such models have limited representation power due to their linear formulation. Recently, non-linear learnable methods have been proposed, although most of them resort to intermediate representations, such as 3D grids of voxels or 2D views. In this paper, we introduce a convolutional mesh autoencoder and a GAN architecture based on the spiral convolutional operator, acting directly on the mesh and leveraging its underlying geometric structure. We provide an analysis of our convolution operator and demonstrate state-of-the-art results on 3D shape datasets compared to the linear Morphable Model and the recently proposed COMA model.