Bourached, Anthony
GAUCHE: A Library for Gaussian Processes in Chemistry
Griffiths, Ryan-Rhys, Klarner, Leo, Moss, Henry B., Ravuri, Aditya, Truong, Sang, Stanton, Samuel, Tom, Gary, Rankovic, Bojana, Du, Yuanqi, Jamasb, Arian, Deshwal, Aryan, Schwartz, Julius, Tripp, Austin, Kell, Gregory, Frieder, Simon, Bourached, Anthony, Chan, Alex, Moss, Jacob, Guo, Chengzhi, Durholt, Johannes, Chaurasia, Saudamini, Strieth-Kalthoff, Felix, Lee, Alpha A., Cheng, Bingqing, Aspuru-Guzik, Alán, Schwaller, Philippe, Tang, Jian
We introduce GAUCHE, a library for GAUssian processes in CHEmistry. Gaussian processes have long been a cornerstone of probabilistic machine learning, affording particular advantages for uncertainty quantification and Bayesian optimisation. Extending Gaussian processes to chemical representations, however, is nontrivial, necessitating kernels defined over structured inputs such as graphs, strings and bit vectors. By defining such kernels in GAUCHE, we seek to open the door to powerful tools for uncertainty quantification and Bayesian optimisation in chemistry. Motivated by scenarios frequently encountered in experimental chemistry, we showcase applications for GAUCHE in molecular discovery and chemical reaction optimisation. The codebase is made available at https://github.com/leojklarner/gauche
Hierarchical Graph-Convolutional Variational AutoEncoding for Generative Modelling of Human Motion
Bourached, Anthony, Gray, Robert, Griffiths, Ryan-Rhys, Jha, Ashwani, Nachev, Parashkev
Models of human motion commonly focus either on trajectory prediction or action classification but rarely both. The marked heterogeneity and intricate compositionality of human motion render each task vulnerable to the data degradation and distributional shift common to real-world scenarios. A sufficiently expressive generative model of action could in theory enable data conditioning and distributional resilience within a unified framework applicable to both tasks. Here we propose a novel architecture based on hierarchical variational autoencoders and deep graph convolutional neural networks for generating a holistic model of action over multiple time-scales. We show this Hierarchical Graph-convolutional Variational Autoencoder (HG-VAE) to be capable of generating coherent actions, detecting out-of-distribution data, and imputing missing data by gradient ascent on the model's posterior. Trained and evaluated on H3.6M and the largest collection of open source human motion data, AMASS, we show HG-VAE can facilitate downstream discriminative learning better than baseline models.
The Photoswitch Dataset: A Molecular Machine Learning Benchmark for the Advancement of Synthetic Chemistry
Thawani, Aditya R., Griffiths, Ryan-Rhys, Jamasb, Arian, Bourached, Anthony, Jones, Penelope, McCorkindale, William, Aldrick, Alexander A., Lee, Alpha A.
The space of synthesizable molecules is greater than $10^{60}$, meaning only a vanishingly small fraction of these molecules have ever been realized in the lab. In order to prioritize which regions of this space to explore next, synthetic chemists need access to accurate molecular property predictions. While great advances in molecular machine learning have been made, there is a dearth of benchmarks featuring properties that are useful for the synthetic chemist. Focussing directly on the needs of the synthetic chemist, we introduce the Photoswitch Dataset, a new benchmark for molecular machine learning where improvements in model performance can be immediately observed in the throughput of promising molecules synthesized in the lab. Photoswitches are a versatile class of molecule for medical and renewable energy applications where a molecule's efficacy is governed by its electronic transition wavelengths. We demonstrate superior performance in predicting these wavelengths compared to both time-dependent density functional theory (TD-DFT), the incumbent first principles quantum mechanical approach, as well as a panel of human experts. Our baseline models are currently being deployed in the lab as part of the decision process for candidate synthesis. It is our hope that this benchmark can drive real discoveries in photoswitch chemistry and that future benchmarks can be introduced to pivot learning algorithm development to benefit more expansive areas of synthetic chemistry.
Raiders of the Lost Art
Bourached, Anthony, Cann, George
Neural style transfer, first proposed by Gatys et al. (2015), can be used to create novel artistic work through rendering a content image in the form of a style image. We present a novel method of reconstructing lost artwork, by applying neural style transfer to x-radiographs of artwork with secondary interior artwork beneath a primary exterior, so as to reconstruct lost artwork. Finally we reflect on AI art exhibitions and discuss the social, cultural, ethical, and philosophical impact of these technical innovations.