Goto

Collaborating Authors

 Bouhadjar, Younes


NeuroBench: Advancing Neuromorphic Computing through Collaborative, Fair and Representative Benchmarking

arXiv.org Artificial Intelligence

The field of neuromorphic computing holds great promise in terms of advancing computing efficiency and capabilities by following brain-inspired principles. However, the rich diversity of techniques employed in neuromorphic research has resulted in a lack of clear standards for benchmarking, hindering effective evaluation of the advantages and strengths of neuromorphic methods compared to traditional deep-learning-based methods. This paper presents a collaborative effort, bringing together members from academia and the industry, to define benchmarks for neuromorphic computing: NeuroBench. The goals of NeuroBench are to be a collaborative, fair, and representative benchmark suite developed by the community, for the community. In this paper, we discuss the challenges associated with benchmarking neuromorphic solutions, and outline the key features of NeuroBench. We believe that NeuroBench will be a significant step towards defining standards that can unify the goals of neuromorphic computing and drive its technological progress. Please visit neurobench.ai for the latest updates on the benchmark tasks and metrics.


Skip Connections in Spiking Neural Networks: An Analysis of Their Effect on Network Training

arXiv.org Artificial Intelligence

Spiking neural networks (SNNs) have gained attention as a promising alternative to traditional artificial neural networks (ANNs) due to their potential for energy efficiency and their ability to model spiking behavior in biological systems. However, the training of SNNs is still a challenging problem, and new techniques are needed to improve their performance. In this paper, we study the impact of skip connections on SNNs and propose a hyperparameter optimization technique that adapts models from ANN to SNN. We demonstrate that optimizing the position, type, and number of skip connections can significantly improve the accuracy and efficiency of SNNs by enabling faster convergence and increasing information flow through the network. Our results show an average +8% accuracy increase on CIFAR-10-DVS and DVS128 Gesture datasets adaptation of multiple state-of-the-art models.


Learning to Remember, Forget and Ignore using Attention Control in Memory

arXiv.org Machine Learning

Typical neural networks with external memory do not effectively separate capacity for episodic and working memory as is required for reasoning in humans. Applying knowledge gained from psychological studies, we designed a new model called Differentiable Working Memory (DWM) in order to specifically emulate human working memory. As it shows the same functional characteristics as working memory, it robustly learns psychology inspired tasks and converges faster than comparable state-of-the-art models. Moreover, the DWM model successfully generalizes to sequences two orders of magnitude longer than the ones used in training. Our in-depth analysis shows that the behavior of DWM is interpretable and that it learns to have fine control over memory, allowing it to retain, ignore or forget information based on its relevance.