Boubeta-Puig, Juan
Atmosphere: Context and situational-aware collaborative IoT architecture for edge-fog-cloud computing
Ortiz, Guadalupe, Zouai, Meftah, Kazar, Okba, Garcia-de-Prado, Alfonso, Boubeta-Puig, Juan
The Internet of Things (IoT) has grown significantly in popularity, accompanied by increased capacity and lower cost of communications, and overwhelming development of technologies. At the same time, big data and real-time data analysis have taken on great importance and have been accompanied by unprecedented interest in sharing data among citizens, public administrations and other organisms, giving rise to what is known as the Collaborative Internet of Things. This growth in data and infrastructure must be accompanied by a software architecture that allows its exploitation. Although there are various proposals focused on the exploitation of the IoT at edge, fog and/or cloud levels, it is not easy to find a software solution that exploits the three tiers together, taking maximum advantage not only of the analysis of contextual and situational data at each tier, but also of two-way communications between adjacent ones. In this paper, we propose an architecture that solves these deficiencies by proposing novel technologies which are appropriate for managing the resources of each tier: edge, fog and cloud. In addition, the fact that two-way communications along the three tiers of the architecture is allowed considerably enriches the contextual and situational information in each layer, and substantially assists decision making in real time. The paper illustrates the proposed software architecture through a case study of respiratory disease surveillance in hospitals. As a result, the proposed architecture permits efficient communications between the different tiers responding to the needs of these types of IoT scenarios.
A Framework for History-Aware Hyperparameter Optimisation in Reinforcement Learning
Parra-Ullauri, Juan Marcelo, Zhen, Chen, García-Domínguez, Antonio, Bencomo, Nelly, Zheng, Changgang, Boubeta-Puig, Juan, Ortiz, Guadalupe, Yang, Shufan
A Reinforcement Learning (RL) system depends on a set of initial conditions (hyperparameters) that affect the system's performance. However, defining a good choice of hyperparameters is a challenging problem. Hyperparameter tuning often requires manual or automated searches to find optimal values. Nonetheless, a noticeable limitation is the high cost of algorithm evaluation for complex models, making the tuning process computationally expensive and time-consuming. In this paper, we propose a framework based on integrating complex event processing and temporal models, to alleviate these trade-offs. Through this combination, it is possible to gain insights about a running RL system efficiently and unobtrusively based on data stream monitoring and to create abstract representations that allow reasoning about the historical behaviour of the RL system. The obtained knowledge is exploited to provide feedback to the RL system for optimising its hyperparameters while making effective use of parallel resources. We introduce a novel history-aware epsilon-greedy logic for hyperparameter optimisation that instead of using static hyperparameters that are kept fixed for the whole training, adjusts the hyperparameters at runtime based on the analysis of the agent's performance over time windows in a single agent's lifetime. We tested the proposed approach in a 5G mobile communications case study that uses DQN, a variant of RL, for its decision-making. Our experiments demonstrated the effects of hyperparameter tuning using history on training stability and reward values. The encouraging results show that the proposed history-aware framework significantly improved performance compared to traditional hyperparameter tuning approaches.