Bottou, Léon
Diagonal Rescaling For Neural Networks
Lafond, Jean, Vasilache, Nicolas, Bottou, Léon
We define a second-order neural network stochastic gradient training algorithm whose block-diagonal structure effectively amounts to normalizing the unit activations. Investigating why this algorithm lacks in robustness then reveals two interesting insights. The first insight suggests a new way to scale the stepsizes, clarifying popular algorithms such as RMSProp as well as old neural network tricks such as fanin stepsize scaling. The second insight stresses the practical importance of dealing with fast changes of the curvature of the cost.
Towards Principled Methods for Training Generative Adversarial Networks
Arjovsky, Martin, Bottou, Léon
The goal of this paper is not to introduce a single algorithm or method, but to make theoretical steps towards fully understanding the training dynamics of generative adversarial networks. In order to substantiate our theoretical analysis, we perform targeted experiments to verify our assumptions, illustrate our claims, and quantify the phenomena. This paper is divided into three sections. The first section introduces the problem at hand. The second section is dedicated to studying and proving rigorously the problems including instability and saturation that arize when training generative adversarial networks. The third section examines a practical and theoretically grounded direction towards solving these problems, while introducing new tools to study them.
No Regret Bound for Extreme Bandits
Nishihara, Robert, Lopez-Paz, David, Bottou, Léon
Algorithms for hyperparameter optimization abound, all of which work well under different and often unverifiable assumptions. Motivated by the general challenge of sequentially choosing which algorithm to use, we study the more specific task of choosing among distributions to use for random hyperparameter optimization. This work is naturally framed in the extreme bandit setting, which deals with sequentially choosing which distribution from a collection to sample in order to minimize (maximize) the single best cost (reward). Whereas the distributions in the standard bandit setting are primarily characterized by their means, a number of subtleties arise when we care about the minimal cost as opposed to the average cost. For example, there may not be a well-defined "best" distribution as there is in the standard bandit setting. The best distribution depends on the rewards that have been obtained and on the remaining time horizon. Whereas in the standard bandit setting, it is sensible to compare policies with an oracle which plays the single best arm, in the extreme bandit setting, there are multiple sensible oracle models. We define a sensible notion of "extreme regret" in the extreme bandit setting, which parallels the concept of regret in the standard bandit setting. We then prove that no policy can asymptotically achieve no extreme regret.
Unifying distillation and privileged information
Lopez-Paz, David, Bottou, Léon, Schölkopf, Bernhard, Vapnik, Vladimir
Distillation (Hinton et al., 2015) and privileged information (Vapnik & Izmailov, 2015) are two techniques that enable machines to learn from other machines. This paper unifies these two techniques into generalized distillation, a framework to learn from multiple machines and data representations. We provide theoretical and causal insight about the inner workings of generalized distillation, extend it to unsupervised, semisupervised and multitask learning scenarios, and illustrate its efficacy on a variety of numerical simulations on both synthetic and real-world data.
Counterfactual Reasoning and Learning Systems
Bottou, Léon, Peters, Jonas, Quiñonero-Candela, Joaquin, Charles, Denis X., Chickering, D. Max, Portugaly, Elon, Ray, Dipankar, Simard, Patrice, Snelson, Ed
This work shows how to leverage causal inference to understand the behavior of complex learning systems interacting with their environment and predict the consequences of changes to the system. Such predictions allow both humans and algorithms to select changes that improve both the short-term and long-term performance of such systems. This work is illustrated by experiments carried out on the ad placement system associated with the Bing search engine.
The Tradeoffs of Large Scale Learning
Bottou, Léon, Bousquet, Olivier
This contribution develops a theoretical framework that takes into account the effect of approximate optimization on learning algorithms. The analysis shows distinct tradeoffs for the case of small-scale and large-scale learning problems. Small-scale learning problems are subject to the usual approximation--estimation tradeoff. Large-scale learning problems are subject to a qualitatively different tradeoff involving the computational complexity of the underlying optimization algorithms in non-trivial ways.
Parallel Support Vector Machines: The Cascade SVM
Graf, Hans P., Cosatto, Eric, Bottou, Léon, Dourdanovic, Igor, Vapnik, Vladimir
We describe an algorithm for support vector machines (SVM) that can be parallelized efficiently and scales to very large problems with hundreds of thousands of training vectors. Instead of analyzing the whole training set in one optimization step, the data are split into subsets and optimized separately with multiple SVMs. The partial results are combined and filtered again in a'Cascade' of SVMs, until the global optimum is reached. The Cascade SVM can be spread over multiple processors with minimal communication overhead and requires far less memory, since the kernel matrices are much smaller than for a regular SVM. Convergence to the global optimum is guaranteed with multiple passes th rough the Cascade, but already a single pass provides good generalization. A single pass is 5x - 10x faster than a regular SVM for problems of 100,000 vectors when implemented on a single processor. Parallel implementations on a cluster of 16 processors were tested with over 1 million vectors (2-class problems), converging in a day or two, while a regular SVM never converged in over a week.
Breaking SVM Complexity with Cross-Training
Bottou, Léon, Weston, Jason, Bakir, Gökhan H.
We propose to selectively remove examples from the training set using probabilistic estimates related to editing algorithms (Devijver and Kittler, 1982). This heuristic procedure aims at creating a separable distribution of training examples with minimal impact on the position of the decision boundary. It breaks the linear dependency between the number of SVs and the number of training examples, and sharply reduces the complexity of SVMs during both the training and prediction stages.
Parallel Support Vector Machines: The Cascade SVM
Graf, Hans P., Cosatto, Eric, Bottou, Léon, Dourdanovic, Igor, Vapnik, Vladimir
We describe an algorithm for support vector machines (SVM) that can be parallelized efficiently and scales to very large problems with hundreds of thousands of training vectors. Instead of analyzing the whole training set in one optimization step, the data are split into subsets and optimized separately with multiple SVMs. The partial results are combined and filtered again in a'Cascade' of SVMs, until the global optimum is reached. The Cascade SVM can be spread over multiple processors with minimal communication overhead and requires far less memory, since the kernel matrices are much smaller than for a regular SVM. Convergence to the global optimum is guaranteed with multiple passes through the Cascade, but already a single pass provides good generalization. A single pass is 5x - 10x faster than a regular SVM for problems of 100,000 vectors when implemented on a single processor. Parallel implementations on a cluster of 16 processors were tested with over 1 million vectors (2-class problems), converging in a day or two, while a regular SVM never converged in over a week.
Geometric Clustering Using the Information Bottleneck Method
Still, Susanne, Bialek, William, Bottou, Léon
We argue that K-means and deterministic annealing algorithms for geometric clustering can be derived from the more general Information Bottleneck approach. If we cluster the identities of data points to preserve information about their location, the set of optimal solutions is massively degenerate. But if we treat the equations that define the optimal solution as an iterative algorithm, then a set of "smooth" initial conditions selects solutions with the desired geometrical properties. In addition to conceptual unification, we argue that this approach can be more efficient and robust than classic algorithms.